Neuerscheinungen 2011Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Steven Homer, Alan L. Selman
(Beteiligte)
Computability and Complexity Theory
2. Aufl. 2011. xvi, 300 S. 50 SW-Abb., XVI, 298p. 50 illus.. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2011
ISBN: 1-461-40681-1 (1461406811)
Neue ISBN: 978-1-461-40681-5 (9781461406815)
Preis und Lieferzeit: Bitte klicken
This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes:
a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of KarpLipton.
a chapter studying properties of the fundamental probabilistic complexity classes
a study of the alternating Turing machine and uniform circuit classes.
an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda
a thorough treatment of the proof that IP is identical to PSPACE
With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool.
Topics and features:
Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes
Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner
Provides key mathematical background information, including sections on logic and number theory and algebra
Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes
Preliminaries.- Introduction to Computability.- Undecidability.- Introduction to Complexity Theory.- Basic Results of Complexity Theory.- Nondeterminism and NP-Completeness.- Relative Computability.- Nonuniform Complexity.- Parallelism.- Probabilistic Complexity Classes.- Introduction to Counting Classes.- Interactive Proof Systems.- References.- Author Index.- Subject Index.