buchspektrum Internet-Buchhandlung

Neuerscheinungen 2012

Stand: 2018-07-17
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

W. S. Anglin, J. Lambek (Beteiligte)

The Heritage of Thales


Softcover reprint of the original 1st ed. 1995. 2012. x, 331 S. 4 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK 2012
ISBN: 1-461-26906-7 (1461269067)
Neue ISBN: 978-1-461-26906-9 (9781461269069)

Preis und Lieferzeit: Bitte klicken


The authors´ novel approach to some interesting mathematical concepts - not normally taught in other courses - places them in a historical and philosophical setting. Although primarily intended for mathematics undergraduates, the book will also appeal to students in the sciences, humanities and education with a strong interest in this subject. The first part proceeds from about 1800 BC to 1800 AD, discussing, for example, the Renaissance method for solving cubic and quartic equations and providing rigorous elementary proof that certain geometrical problems posed by the ancient Greeks cannot be solved by ruler and compass alone. The second part presents some fundamental topics of interest from the past two centuries, including proof of G del´s incompleteness theorem, together with a discussion of its implications.
0 Introduction.- 0 Introduction.- I: History and Philosophy of Mathematics.- 1 Egyptian Mathematics.- 2 Scales of Notation.- 3 Prime Numbers.- 4 Sumerian-Babylonian Mathematics.- 5 More about Mesopotamian Mathematics.- 6 The Dawn of Greek Mathematics.- 7 Pythagoras and His School.- 8 Perfect Numbers.- 9 Regular Polyhedra.- 10 The Crisis of Incommensurables.- 11 From Heraclitus to Democritus.- 12 Mathematics in Athens.- 13 Plato and Aristotle on Mathematics.- 14 Constructions with Ruler and Compass.- 15 The Impossibility of Solving the Classical Problems.- 16 Euclid.- 17 Non-Euclidean Geometry and Hilbert´s Axioms.- 18 Alexandria from 300 BC to 200 BC.- 19 Archimedes.- 20 Alexandria from 200 BC to 500 AD.- 21 Mathematics in China and India.- 22 Mathematics in Islamic Countries.- 23 New Beginnings in Europe.- 24 Mathematics in the Renaissance.- 25 The Cubic and Quartic Equations.- 26 Renaissance Mathematics Continued.- 27 The Seventeenth Century in France.- 28 The Seventeenth Century Continued.- 29 Leibniz.- 30 The Eighteenth Century.- 31 The Law of Quadratic Reciprocity.- II: Foundations of Mathematics.- 1 The Number System.- 2 Natural Numbers (Peano´s Approach).- 3 The Integers.- 4 The Rationals.- 5 The Real Numbers.- 6 Complex Numbers.- 7 The Fundamental Theorem of Algebra.- 8 Quaternions.- 9 Quaternions Applied to Number Theory.- 10 Quaternions Applied to Physics.- 11 Quaternions in Quantum Mechanics.- 12 Cardinal Numbers.- 13 Cardinal Arithmetic.- 14 Continued Fractions.- 15 The Fundamental Theorem of Arithmetic.- 16 Linear Diophantine Equations.- 17 Quadratic Surds.- 18 Pythagorean Triangles and Fermat´s Last Theorem.- 19 What Is a Calculation?.- 20 Recursive and Recursively Enumerable Sets.- 21 Hilbert´s Tenth Problem.- 22 Lambda Calculus.- 23 Logic from Aristotle to Russell.- 24 Intuitionistic Propositional Calculus.- 25 How to Interpret Intuitionistic Logic.- 26 Intuitionistic Predicate Calculus.- 27 Intuitionistic Type Theory.- 28 Gödel´s Theorems.- 29 Proof of Gödel´s Incompleteness Theorem.- 30 More about Gödel´s Theorems.- 31 Concrete Categories.- 32 Graphs and Categories.- 33 Functors.- 34 Natural Transformations.- 35 A Natural Transformation between Vector Spaces.- References.