Neuerscheinungen 2016Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Cindy Gross, David Kjerrumgaard, Scott Shaw
(Beteiligte)
Practical Hive
A Guide to Hadoop´s Data Warehouse System
1st ed. 2016. xxi, 265 S. 12 SW-Abb., 73 Farbabb. 254 mm
Verlag/Jahr: SPRINGER, BERLIN; APRESS 2016
ISBN: 1-484-20272-4 (1484202724)
Neue ISBN: 978-1-484-20272-2 (9781484202722)
Preis und Lieferzeit: Bitte klicken
Dive into the world of SQL on Hadoop and get the most out of your Hive data warehouses. This book is your go-to resource for using Hive: authors Scott Shaw, Ankur Gupta, David Kjerrumgaard, and Andreas Francois Vermeulen take you through learning HiveQL, the SQL-like language specific to Hive, to analyze, export, and massage the data stored across your Hadoop environment. From deploying Hive on your hardware or virtual machine and setting up its initial configuration to learning how Hive interacts with Hadoop, MapReduce, Tez and other big data technologies, Practical Hive gives you a detailed treatment of the software.
In addition, this book discusses the value of open source software, Hive performance tuning, and how to leverage semi-structured and unstructured data.
What You Will Learn
Install and configure Hive for new and existing datasets
Perform DDL operations
Execute efficient DML operations
Use tables, partitions, buckets, and user-defined functions
Discover performance tuning tips and Hive best practices
Who This Book Is For
Developers, companies, and professionals who deal with large amounts of data and could use software that can efficiently manage large volumes of input. It is assumed that readers have the ability to work with SQL.
Chapter 1: Setting the Stage for Hive: Hadoop.- Chapter 2: Introducing Hive.- Chapter 3: Hive Architecture.- Chapter 4: Hive Tables DDL.- Chapter 5: Data Manipulation Language (DML).- Chapter 6: Loading Data into Hive.- Chapter 7: Querying Semi-Structured Data.- Chapter 8: Hive Analytics.- Chapter 9: Performance Tuning: Hive.- Chapter 10: Hive Security.- Chapter 11: Future of Hive.- Chapter 12: Appendix A. Building a Big Data Team.- Chapter 13: Appendix B. Hive Functions.