buchspektrum Internet-Buchhandlung

Neuerscheinungen 2016

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Fritz Gesztesy, Marcus Waurick (Beteiligte)

The Callias Index Formula Revisited


1st ed. 2016. 2016. ix, 192 S. 1 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2016
ISBN: 3-319-29976-X (331929976X)
Neue ISBN: 978-3-319-29976-1 (9783319299761)

Preis und Lieferzeit: Bitte klicken


These lecture notes aim at providing a purely analytical and accessible proof of the Callias index formula. In various branches of mathematics (particularly, linear and nonlinear partial differential operators, singular integral operators, etc.) and theoretical physics (e.g., nonrelativistic and relativistic quantum mechanics, condensed matter physics, and quantum field theory), there is much interest in computing Fredholm indices of certain linear partial differential operators. In the late 1970´s, Constantine Callias found a formula for the Fredholm index of a particular first-order differential operator (intimately connected to a supersymmetric Dirac-type operator) additively perturbed by a potential, shedding additional light on the Fedosov-Hörmander Index Theorem. As a byproduct of our proof we also offer a glimpse at special non-Fredholm situations employing a generalized Witten index.
Introduction.-Notational Conventions.- Functional Analytic.- On Schatten-von Neumann Classes and Trace Class.- Pointwise Estimates for Integral Kernels.- Dirac-Type.- Derivation of the Trace Formula - The Trace Class Result.- Derivation of the Trace Formula - Diagonal Estimates.- The Case n = 3.- The Index Theorem and Some Consequences.- Perturbation Theory for the Helmholtz Equation.- The Proof of Theorem 10.2: The Smooth Case.- The Proof of Theorem 10.2: The General Case.- A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index.- A: Construction of the Euclidean Dirac Algebra.- B: A Counterexample to [22, Lemma 5].- References.- Index.