buchspektrum Internet-Buchhandlung

Neuerscheinungen 2016

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

John C. George, Abdollah Khodkar, W. D. Wallis (Beteiligte)

Pancyclic and Bipancyclic Graphs


1st ed. 2016. 2016. xii, 108 S. 64 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2016
ISBN: 3-319-31950-7 (3319319507)
Neue ISBN: 978-3-319-31950-6 (9783319319506)

Preis und Lieferzeit: Bitte klicken


This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation.

The following questions are highlighted through the book:

- What is the smallest possible number of edges in a pancyclic graph with v vertices?

- When do pancyclic graphs exist with exactly one cycle of every possible length?

- What is the smallest possible number of edges in a bipartite graph with v vertices?

- When do bipartite graphs exist with exactly one cycle of every possible length?
1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References.