Neuerscheinungen 2016Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Jiuping Xu, Ziqiang Zeng
(Beteiligte)
Fuzzy-Like Multiple Objective Multistage Decision Making
Softcover reprint of the original 1st ed. 2014. 2016. xxiv, 378 S. 111 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2016
ISBN: 3-319-34314-9 (3319343149)
Neue ISBN: 978-3-319-34314-3 (9783319343143)
Preis und Lieferzeit: Bitte klicken
This book presents the state-of-the-art methodology for modeling, analyzing and solving multiple objective multistage decision making practical application problems under fuzzy-like uncertainty. Includes real-world engineering case studies.
Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like uncertainty, including the dynamic machine allocation, closed multiclass queueing networks optimization, inventory management, facilities planning and transportation assignment. A number of real-world engineering case studies are used to illustrate in detail the methodology. With its emphasis on problem-solving and applications, this book is ideal for researchers, practitioners, engineers, graduate students and upper-level undergraduates in applied mathematics, management science, operations research, information system, civil engineering, building construction and transportation optimization
Multiple Objective Multistage Decision Making.- Elements of Fuzzy-Like MOMSDM.- Fuzzy MOMSDM for Dynamic Machine Allocation.- Fuzzy MOMSDM for Closed Multiclass Queuing Networks.- Fuzzy Random MOMSDM for Inventory Management.- Fuzzy Random MOMSDM for Facilities Planning.- Fuzzy Random MOMSDM for Transportation Assignment.