Neuerscheinungen 2016Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Sitangshu Bhattacharya, Kamakhya P. Ghatak
(Beteiligte)
Heavily-Doped 2D-Quantized Structures and the Einstein Relation
Softcover reprint of the original 1st ed. 2015. 2016. xl, 347 S. 58 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2016
ISBN: 3-319-38127-X (331938127X)
Neue ISBN: 978-3-319-38127-5 (9783319381275)
Preis und Lieferzeit: Bitte klicken
This book presents the Einstein Relation(ER) in two-dimensional (2-D) Heavily Doped (HD) Quantized Structures. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The ER in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestion for the experimental determination of HD 2D and 3D ERs and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nanodevices and strong external photo excitation (for measuring photon induced physical properties) are also discussed in this context. The influence of crossed electric and quantizing magnetic fields on the ER of the different 2D HD quantized structures (quantum wells, inversion and accumulation layers, quantum well HD superlattices and nipi structures) under different physical conditions is discussed in detail. This monograph contains 100 open research problems which form the integral part of the text and are useful for both Ph.D aspirants and researchers in the fields of condensed matter physics, solid-state sciences, materials science, nano-science and technology and allied fields.
The ER in Quantum Wells (QWs) of Heavily Doped(HD) Non-Parabolic Semiconductors.- The ER in NIPI Structures of HD Non-Parabolic Semiconductors.- The ER in Accumulation Layers of HD Non-Parabolic Semiconductors.- Suggestion for Experimental Determinations of 2D and 3D ERs and few Related Applications.- Conclusion and Scope for Future.- The ER for HD III-V, Ternary and Quaternary Semiconductors Under External Photo-Excitation.- The ER in HDS Under Magnetic Quantization.- The ER in HDS and their Nano-Structures Under Cross- Fields Configuration.- The ER for HD III-V, Ternary and Quaternary Semiconductors Under Strong Electric Field.- The ER in Super-lattices of HDS Under Magnetic Quantization.