Neuerscheinungen 2016Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Vasileios Belagiannis, Andrew Bradley, Gustavo Carneiro, Peter Lo‹c, Marco Loog, Diana Mateus, Jacinto C. Nascimento, JoĆo Paulo Papa, JoĆo Manuel R. S. Tavares
(Beteiligte)
Deep Learning and Data Labeling for Medical Applications
First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings
Herausgegeben von Carneiro, Gustavo; Mateus, Diana; Lo‹c, Peter; Bradley, Andrew; Tavares, JoĆo Manuel R. S.
1st ed. 2016. 2016. xiii, 280 S. 115 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2016
ISBN: 3-319-46975-4 (3319469754)
Neue ISBN: 978-3-319-46975-1 (9783319469751)
Preis und Lieferzeit: Bitte klicken
This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty. The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.
Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.