buchspektrum Internet-Buchhandlung

Neuerscheinungen 2016

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

A. J. Guttmann

Polygons, Polyominoes and Polycubes


Herausgegeben von Guttmann, A. J.
Softcover reprint of the original 1st ed. 2009. 2016. xix, 490 S. 235 mm
Verlag/Jahr: SPRINGER NETHERLANDS 2016
ISBN: 9401777128 (9401777128)
Neue ISBN: 978-9401777124 (9789401777124)

Preis und Lieferzeit: Bitte klicken


This unique book gives a comprehensive account of new mathematical tools used to solve polygon problems. Chapters describe particular aspects of the polygon problem, and applications to biology, to surface phenomena and to computer enumeration methods.
The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn´t been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many other areas, including economics, the social sciences, the biological sciences and even to traf?c models. It is the widespread applicab- ity of these models to interesting phenomena that makes them so deserving of our attention. Here however we restrict our attention to the mathematical aspects. Here we are concerned with collecting together most of what is known about polygons, and the closely related problems of polyominoes. We describe what is known, taking care to distinguish between what has been proved, and what is c- tainlytrue,but has notbeenproved. Theearlierchaptersfocusonwhatis knownand on why the problems have not been solved, culminating in a proof of unsolvability, in a certain sense. The next chapters describe a range of numerical and theoretical methods and tools for extracting as much information about the problem as possible, in some cases permittingexactconjecturesto be made.
History and Introduction to Polygon Models and Polyominoes.- Lattice Polygons and Related Objects.- Exactly Solved Models.- Why Are So Many Problems Unsolved?.- The Anisotropic Generating Function of Self-Avoiding Polygons is not D-Finite.- Polygons and the Lace Expansion.- Exact Enumerations.- Series Analysis.- Monte Carlo Methods for Lattice Polygons.- Effect of Confinement: Polygons in Strips, Slabs and Rectangles.- Limit Distributions and Scaling Functions.- Interacting Lattice Polygons.- Fully Packed Loop Models on Finite Geometries.- Conformal Field Theory Applied to Loop Models.- Stochastic Lowner Evolution and the Scaling Limit of Critical Models.- Appendix: Series Data and Growth Constant, Amplitude and Exponent Estimates.