buchspektrum Internet-Buchhandlung

Neuerscheinungen 2018

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Ai Wern Chung, Brent Munsell, Islem Rekik, Markus D. Schirmer, Guorong Wu (Beteiligte)

Connectomics in NeuroImaging


Second International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
Herausgegeben von Wu, Guorong; Rekik, Islem; Schirmer, Markus D.; Chung, Ai Wern; Munsell, Brent
1st ed. 2018. 2018. x, 147 S. 12 SW-Abb., 51 Farbabb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2018
ISBN: 3-03-000754-5 (3030007545)
Neue ISBN: 978-3-03-000754-6 (9783030007546)

Preis und Lieferzeit: Bitte klicken


This book constitutes the refereed proceedings of the Second International Workshop on Connectomics in NeuroImaging, CNI 2018, held in conjunction with MICCAI 2018 in Granada, Spain, in September 2018.

The 15 full papers presented were carefully reviewed and selected from 20 submissions. The papers deal with new advancements in network construction, analysis, and visualization techniques in connectomics and their use in clinical diagnosis and group comparison studies as well as in various neuroimaging applications.
Towards Ultra-high Resolution 3D Reconstruction of a Whole Rat Brain from 3D-PLI Data.- FOD-based Registration for Susceptibility Distortion Correction in Connectome Imaging.- GIFE: Efficient and Robust Group-wise Isometric Fiber Embedding.- Multi-Modal Brain Tensor Factorization: Preliminary Results with AD Patients.- Intact Connectional Morphometricity Learning Using Multi-View Morphological Brain Networks with Application to Autism Spectrum Disorder.- Neonatal Morphometric Similarity Networks Predict Atypical Brain Development Associated with Preterm Birth.- Heritability Estimation of Reliable Connectomic Features.- Topological Data Analysis of Functional MRI Connectivity in Time and Space Domains.- Riemannian Regression and Classification Models of Brain Networks Applied to Autism.- Defining Patient Specific Functional Parcellations in Lesional Cohorts via Markov Random Fields.- Data-Specific Feature Selection Method Identification for Most Reproducible Connectomic Feature Discovery Fingerprinting Brain States.- Towards Effective Functional Connectome Fingerprinting.- Connectivity-Driven Brain Parcellation via Consensus Clustering.- GRAND: Unbiased Connectome Atlas of Brain Network by Groupwise Graph Shrinkage and Network Diffusion.- Structural Subnetwork Evolution Across the Lifespan: Rich-club, Feeder, Seeder.