Neuerscheinungen 2018Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Steffen Goebbels, Stefan Ritter
(Beteiligte)
Mathematik verstehen und anwenden
Von den Grundlagen bis zu Fourier-Reihen und Laplace-Transformation. Lehrbuch
3. Aufl. 2018. XIII, 1099 S. m. 207 SW- u. 28 Farbabb. sowie 24 Farbt. 240 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER SPEKTRUM 2018
ISBN: 3-662-57393-8 (3662573938)
Neue ISBN: 978-3-662-57393-8 (9783662573938)
Preis und Lieferzeit: Bitte klicken
Gegen Angst vor Mathematik hilft Verstehen. Dieses Buch setzt nur elementare Schulkenntnisse voraus und führt schrittweise und systematisch von der Bruchrechnung bis zu erstaunlichen Sätzen der Höheren Mathematik. Ausgehend von Problemstellungen aus Elektrotechnik und Maschinenbau werden Differenzial- und Integralrechnung, Vektorrechnung, Differenzialgleichungen, Fourier-Reihen, Integraltransformationen sowie Wahrscheinlichkeitsrechnung und Statistik behandelt.
Neben vielen Anwendungsbeispielen aus den Ingenieurwissenschaften finden Sie zu jedem Kapitel zahlreiche Aufgaben (mit Lösungen auf der Website) zum Selbstrechnen.
In der dritten Auflage wurde unter Berücksichtigung von Leserwünschen der Stoffumfang erheblich erweitert, didaktisch überarbeitet und durch weitere anschauliche Beispiele ergänzt.
Vorwort.- 1 Grundlagen.- 1.1 Mengenlehre. 1.2 Logik. 1.3 Reelle Zahlen. 1.4 Rechnen mit reellen Zahlen. 1.5 Reelle Funktionen. 1.6 Komplexe Zahlen. 1.7 Lineare Gleichungssysteme und Matrizen. 1.8 Determinanten. 1.9 Aufgaben.- 2 Differenzial- und Integralrechnung.- 2.1 Folgen. 2.2 Zahlen-Reihen. 2.3 Grenzwerte von Funktionen und Stetigkeit. 2.4 Differenzierbarkeit und Ableitungen. 2.5 Zentrale Sätze der Differenzialrechnung. 2.6 Integralrechnung. 2.7 Satz von Taylor, Kurvendiskussion und Extremalprobleme. 2.8 Potenzreihen. 2.9 Aufgaben.- 3 Lineare Algebra.- 3.1 Vektoren in der Ebene und im Raum. 3.2 Analytische Geometrie. 3.3 Vektorräume. 3.4 Lineare Abbildungen. 3.5 Lösungstheorie linearer Gleichungssysteme. 3.6 Eigenwerte und Eigenvektoren. 3.7 Normierte Vektorräume: Lineare Algebra trifft Analysis. 3.8 Aufgaben.- 4 Funktionen mit mehreren Variablen.- 4.1 Grenzwerte und Stetigkeit. 4.2 Ableitungen von reellwertigen Funktionen mit mehreren Variablen. 4.3 Extremwertrechnung. 4.4 Integralrechnung mit mehreren Variablen. 4.5 Vektoranalysis. 4.6 Aufgaben.- 5 Gewöhnliche Differenzialgleichungen.- 5.1 Einführung. 5.2 Lösungsmethoden für Differenzialgleichungen erster Ordnung. 5.3 Lineare Differenzialgleichungssysteme. 5.4 Lineare Differenzialgleichungen höherer Ordnung. 5.5 Ausblick: Partielle Differenzialgleichungen und Finite-Elemente-Methode. 5.6 Aufgaben.- 6 Fourier-Reihen und Integraltransformationen.- 6.1 Fourier-Reihen. 6.2 Fourier-Transformation. 6.3 Laplace-Transformation. 6.4 Diskrete Fourier-Transformation. 6.5 Wavelets und schnelle Wavelet-Transformation. 6.6 Aufgaben.- 7 Wahrscheinlichkeitsrechnung und Statistik.- 7.1 Beschreibende Statistik. 7.2 Wahrscheinlichkeitsrechnung. 7.3 Schließende Statistik. 7.4 Aufgaben.- Literaturverzeichnis.- Index.
An der Hochschule Niederrhein in Krefeld ist Dr. Steffen Goebbels Professor im Fachbereich Elektrotechnik und Informatik, wo er Höhere Mathematik für Ingenieure unterrichtet.
Dr. Stefan Ritter ist Professor für Mathematik an der Hochschule Karlsruhe und unterrichtet Ingenieure der Elektro- und Informationstechnik.
Beide Mathematiker haben einen anwendungsbezogenen Hintergrund (langjährige Projekte bei IBM und Daimler-Benz) und bringen Ihre Erfahrung mit Studienanfängern in diesen Text ein.