buchspektrum Internet-Buchhandlung

Neuerscheinungen 2018

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Rolf Rannacher

Analysis 3 / Intergralsätze, Lebesgue-Integral und Anwendungen


2018. 204 S. 17.7 x 25.4 cm
Verlag/Jahr: HEIDELBERG UNIVERSITY PUBLISHING 2018
ISBN: 3-946054-91-9 (3946054919)
Neue ISBN: 978-3-946054-91-7 (9783946054917)

Preis und Lieferzeit: Bitte klicken


Dieser einführende Text basiert auf Vorlesungen innerhalb eines dreisemestrigen Kurses "Analysis", den der Autor an der Universität Heidelberg gehalten hat. Im vorliegenden dritten Teil wird die Differential- und Integralrechnung fur Funktionen einer und mehrerer reeller Variablen weiterentwickelt in Richtung auf Riemann-Integrale über Kurven und Flächen und die Integralsätze von Gauß und Stokes. Weiter werden der Lebesguesche Integralbegriff sowie die darauf aufbauenden Funktionenräume eingeführt. Die so gewonnenen Methoden werden dann in der Theorie der Fourier-Integrale sowie für einfache Variationsaufgaben und partielle Differentialgleichungen angewendet. Stoffauswahl und Darstellung orientieren sich dabei insbesondere an den Bedürfnissen der Anwendungen in der Theorie von Differentialgleichungen, der Mathematischen Physik und der Numerik. Das Verständnis der Inhalte erfordert neben dem Stoff der vorausgehenden Bände "Analysis 1 (Differential- und Integralrechnung für Funktionen einer reellen Veränderlichen)", und "Analysis 2 (Differential- und Integralrechnung für Funktionen mehrerer reeller Veränderlichen)" nur Grundkenntnisse aus der Linearen Algebra. Zur Erleichterung des Selbststudiums dienen Übungsaufgaben zu den einzelnen Kapiteln mit Lösungen im Anhang.
Rannacher, Rolf
Rolf Rannacher, Prof. i. R. für Numerische Mathematik an der Universität Heidelberg; Studium der Mathematik an der Universität Frankfurt am Main - Promotion 1974; Habilitation 1978 in Bonn; 1979/1980 Vis. Assoc. Prof. an der University of Michigan (Ann Arbor, USA), dann Professor in Erlangen und Saarbrücken - in Heidelberg seit 1988; Spezialgebiet "Numerik partieller Differentialgleichungen", insbesondere "Methode der finiten Elemente" mit Anwendungen in Natur- und Ingenieurwissenschaften; hierzu über 160 publizierte wissenschaftliche Arbeiten.