Neuerscheinungen 2018Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Mahima Ranjan Adhikari
Basic Algebraic Topology and its Applications
Softcover reprint of the original 1st ed. 2016. 2018. xxix, 615 S. 176 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INDIA; SPRINGER 2018
ISBN: 8132238559 (8132238559)
Neue ISBN: 978-8132238553 (9788132238553)
Preis und Lieferzeit: Bitte klicken
This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book o ers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike.
Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study.
Prerequisite Concepts and Notations.- Basic Homotopy.- The Fundamental Groups.-Covering Spaces.- Fibre Bundles, Vector Bundles and K-theory.- Geometry of Simplicial Complexes and Fundamental Groups.- Higher Homotopy Groups.- Products in Higher Homotopy Groups.- CW-complexes and Homotopy.- Eilenberg-MacLane Spaces.- Homology and Cohomology Theories.- Eilenberg-Steenrod Axioms for Homology and Cohomology Theories.- Consequences of the Eilenberg-Steenrod Axioms.- Some Applications of Homology Theory.- Spectral Homology and Cohomology Theories.- Obstruction Theory.- More Relations Between Homotopy and Homology Groups.- A Brief Historical Note.
"Adhikari´s work is an excellent resource for any individual seeking to learn more about algebraic topology. By no means will this text feel like an introduction to algebraic topology, but it does offer much for both beginners and experts. ... the text will be a valuable reference on the bookshelf of any reader with an interest in algebraic topology. Summing Up: Recommended. Upper-division undergraduates and above; researchers and faculty." (A. Misseldine, Choice, Vol. 54 (9), May, 2017)
"I am pretty enthusiastic about this book. ... it shows very good taste on the author´s part as far as what he´s chosen to do and how he´s chosen to do it. ... Wow! What a nice book. I´m glad I have a copy." (Michael Berg, MAA Reviews, maa.org, February, 2017)
"This is a comprehensive textbook on algebraic topology. ... accessible to students of all levels of mathematics, so suitable for anyone wanting and needing to learn about algebraic topology. It can also offer a valuable resource for advanced students with a specialized knowledge in other areas who want to pursue their interest in this area. ... further readings are provided at the end of each of them, which also enables students to study the subject discussed therein in more depth." (Haruo Minami, zbMATH 1354.55001, 2017)