Neuerscheinungen 2019Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Tuomas Hytönen, Jan van Neerven, Mark Veraar
(Beteiligte)
Analysis in Banach Spaces
Volume II: Probabilistic Methods and Operator Theory
Softcover reprint of the original 1st ed. 2017. 2019. xxiii, 616 S. 7 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2019
ISBN: 3-319-88846-3 (3319888463)
Neue ISBN: 978-3-319-88846-0 (9783319888460)
Preis und Lieferzeit: Bitte klicken
This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.
6.Random sums.-7.Type, cotype, and related properties.- 8.R-boundedness.- 9.Square functions and radonifying operators.- 11.The H1-functional calculus.- P.Open problems.- E.Probability theory.- F Banach lattices.- G Semigroups of linear operators.- H.Holomorphic functions on the strip.- I.Muckenhoupt weights.- References.- Index.
"The book will become an invaluable reference for graduate students and researchers. Those interested in functional analysis, harmonic analysis and stochastic analysis will appreciate the detailed treatment of the theory of R-boundedness, radonifying operators and holomorphic functional calculus developed over the last 20 years." (Oscar Blasco, zbMATH 1402.46002, 2019)