buchspektrum Internet-Buchhandlung

Neuerscheinungen 2010

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Nicola Scafetta

Fractal and Diffusion Entropy Analysis of Time Series


Theory, concepts, applications and computer codes for studying fractal noises and Lévy walk signals
2010. 300 S.
Verlag/Jahr: VDM VERLAG DR. MÜLLER 2010
ISBN: 3-639-25795-2 (3639257952)
Neue ISBN: 978-3-639-25795-3 (9783639257953)

Preis und Lieferzeit: Bitte klicken


Scale invariance has been found to empirically hold for a number of complex systems. The correct evaluation of the scaling exponents of a time series is fundamental to assess the real physical nature of a phenomenon. The traditional methods used to determine these scaling exponents are equivalent because they all rely on the numerical evaluation of the variance. However, two statistical classes of phenomena exist: fractal Brownian motions and Lévy flights and walks. In this book I present the theory and concepts of alternative fractal methods of time series analysis. I introduce a complementary method based on the Shannon entropy: the Diffusion Entropy Analysis (DEA). Using synthetic, solar, geophysical, sociological, physiological and biological data, I examine the properties of these methodologies and discuss the physical ambiguities of the variance-based methods. I argue that the variance-based algorithms should be used together with DEA to properly distinguish fractal Brownian motions from Lévy flight-walk classes of noises and complex processes. Computer C++ codes are provided for generating complex fractal noises and performing multiple fractal analyses of time series.
Nicola Scafetta, Ph. D.: Studied statistical physics and complex systems at the University of North Texas (USA). Laurea in Physics from the University of Pisa (Italy). Research scientist at Duke University, Durham NC.