 Neuerscheinungen 2010Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |

Marco Harde
Die Riemannsche Vermutung für Kurven über endlichen Körpern
Der Satz von Hasse-Weil
2010. 112 S. 220 mm
Verlag/Jahr: VDM VERLAG DR. MÜLLER 2010
ISBN: 3-639-28757-6 (3639287576)
Neue ISBN: 978-3-639-28757-8 (9783639287578)
Preis und Lieferzeit: Bitte klicken
Die Riemannsche Vermutung ist eines der wichtigsten noch ungelösten Probleme der heutigen Mathematik. Sie geht auf den deutschen Mathematiker Georg Friedrich Bernhard Riemann zurück, der sie 1859 aufstellte. Der Grund für die große Bedeutung der Riemannschen Vermutung liegt in der Verbindung der komplexen Analysis mit der analytischen Zahlentheorie. In dem Spezialfall für Kurven über endlichen Körpern können wir die Vermutung beweisen. Dieser Beweis wurde von André Weil 1940 erbracht. 1973 wurde er von Enrico Bombieri erneut geführt, wobei Bombieri den Beweis vereinfachte und fast nur Techniken der algebraischen Geometrie nutzte. Der Spezialfall der Vermutung hat ebenfalls wichtige Folgerungen. Mit ihrer Hilfe lassen sich Abschätzungen über die Anzahl rationaler Punkte von Kurven über endlichen Körpern herleiten, die z.B. zur Optimierung geometrischer Codes verwendet werden. Zudem war dieser Spezialfall von Bedeutung für den Beweis des letzten Satzes von Fermat. In diesem Buch werden die benötigten Grundlagen für den Beweis der Riemannschen Vermutung für Kurven über endlichen Körpern zusammengetragen und der Spezialfall wird ausführlicher und elementarer bewiesen.
Marco Harde, 1980 in Haltern geboren, ist Studienrat in den Fächern Mathematik und Informatik am Freiherr-vom-Stein-Gymnasium in Lünen. Er schloss 2008 sein Diplom in Mathematik an der Technischen Universität Dortmund erfolgreich ab.