 Neuerscheinungen 2010Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |

Primitivo Belé Acosta-Humánez
Galoisian Approach to Supersymmetric Quantum Mechanics
The integrability analysis of the Schrödinger equation by means of differential Galois theory
2010. 128 S. 220 mm
Verlag/Jahr: VDM VERLAG DR. MÜLLER 2010
ISBN: 3-639-30856-5 (3639308565)
Neue ISBN: 978-3-639-30856-3 (9783639308563)
Preis und Lieferzeit: Bitte klicken
This book is concerning to a Differential Galois (Picard-Vessiot) Theory point of view of the Supersymmetric Quantum Mechanics. The main object is the non-relativistic stationary Schrödinger equation , where are introduced the concepts of Algebraic Spectrum and Hamiltonian Algebrization. Using the Kovacic´s Algorithm and the Hamiltonian Algebrization are analyzed Darboux transformations, Crum iterations and supersymmetric quantum mechanics, including their Algebrized Versions from a Galoisian approach. In particular are obtained the ground state, eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schrödinger equations with potentials such as exactly solvable, quasi-exactly solvable and shape invariant potentials. Finally is introduced one methodology to find Algebraically Solvable and Algebraically Quasi- Solvable Potentials. It consists in to apply the Hamiltonian Algebrization, as inverse process, over families of second order linear differential equations integrables in the Picard-Vessiot sense for a set of parameters, in particular, involving orthogonal polynomials and special functions.
Dr. Primitivo Belén Acosta-Humánez obtained the PhD degree with European label at UPC-Barcelona. Currently he is the founder and director of IMA at Universidad Sergio Arboleda, university in where he studied the bachelor and MA in mathematics. His field of research is Algebraic Methods in Mathematical Physics and Dynamical Systems.