buchspektrum Internet-Buchhandlung

Neuerscheinungen 2011

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

G. Duvant, C. W. John, J. L. Lions (Beteiligte)

Inequalities in Mechanics and Physics


Übersetzung: John, C. W.
Softcover reprint of the original 1st ed. 1976. 2011. xvi, 400 S. XVI, 397 pp. 28 figs. 244 mm
Verlag/Jahr: SPRINGER, BERLIN 2011
ISBN: 3-642-66167-X (364266167X)
Neue ISBN: 978-3-642-66167-9 (9783642661679)

Preis und Lieferzeit: Bitte klicken


1. We begin by giving a simple example of a partial differential inequality that occurs in an elementary physics problem. We consider a fluid with pressure u(x, t) at the point x at the instant t that 3 occupies a region Q oflR bounded by a membrane r of negligible thickness that, however, is semi-permeable, i. e., a membrane that permits the fluid to enter Q freely but that prevents all outflow of fluid. One can prove then (cf. the details in Chapter 1, Section 2.2.1) that au (aZu azu aZu) (1) in Q, to, -a - du = g du = -a z + -a z + -a z t Xl X X3 z l g a given function, with boundary conditions in the form of inequalities u(X,t"o = au(x,t)/an=O, XEr, (2) u(x,t)=o = au(x,t)/an?:O, XEr, to which is added the initial condition (3) u(x,O)=uo(x). We note that conditions (2) are non linear; they imply that, at each fixed instant t, there exist on r two regions r~ and n where u(x, t) =0 and au (x, t)/an = 0, respectively. These regions are not prescribed; thus we deal with a "free boundary" problem.