buchspektrum Internet-Buchhandlung

Neuerscheinungen 2012

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

J. M. Cole, Jean Hladik (Beteiligte)

Spinors in Physics


Übersetzung: Cole, J. M.
Softcover reprint of the original 1st ed. 1999. 2012. xi, 226 S. XI, 226 p. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2012
ISBN: 1-461-27163-0 (1461271630)
Neue ISBN: 978-1-461-27163-5 (9781461271635)

Preis und Lieferzeit: Bitte klicken


Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.
´I Spinors in Three-Dimensional Space.- 1 Two-Component Spinor Geometry.- 1.1 Definition of a Spinor.- 1.1.1 Stereographic Projection.- 1.1.2 Vectors Associated with a Spinor.- 1.1.3 The Definition of a Spinor.- 1.2 Geometrical Properties.- 1.2.1 Plane Symmetries.- 1.2.2 Rotations.- 1.2.3 The Olinde-Rodrigues Parameters.- 1.2.4 Rotations Defined in Terms of the Euler Angles.- 1.3 Infinitesimal Properties of Rotations.- 1.3.1 The Infinitesimal Rotation Matrix.- 1.3.2 The Pauli Matrices.- 1.3.3 Properties of the Pauli Matrices.- 1.4 Algebraic Properties of Spinors.- 1.4.1 Operations on Spinors.- 1.4.2 Properties of Operations on Spinors.- 1.4.3 The Basis of the Vector Space of Spinors.- 1.4.4 Hermitian Vector Spaces.- 1.4.5 Properties of the Hermitian Product.- 1.4.6 The Use of an Antisymmetric Metric Tensor.- 1.5 Solved Problems.- 2 Spinors and SU (2) Group Representations.- 2.1 Lie Groups.- 2.1.1 Examples of Continuous Groups.- 2.1.2 Analytic Definition of Continuous Groups.- 2.1.3 Linear Representations.- 2.1.4 Infinitesimal Generators.- 2.1.5 Infinitesimal Matrices.- 2.1.6 Exponential Mapping.- 2.1.7 The Nomenclature of Continuous Linear Groups.- 2.2 Unimodular Unitary Groups.- 2.2.1 The Unitary Group U (2).- 2.2.2 The Unitary Unimodular Group SU (2).- 2.2.3 Three-Dimensional Representations.- 2.2.4 Representations of the Groups SU (2).- 2.2.5 Irreducible Representations of SU (2).- 2.3 Solved Problems.- 3 Spinor Representation of SO (3).- 3.1 The Rotation Group SO (3).- 3.1.1 Rotations About a Point.- 3.1.2 The Infinitesimal Matrices of the Group.- 3.1.3 Rotations About a Given Axis.- 3.1.4 The Exponential Matrix of a Rotation About a Given Axis.- 3.2 Irreducible Representations of SO (3).- 3.2.1 The Structure Equations.- 3.2.2 The Infinitesimal Matrices of the Representations of the Group SO (3).- 3.2.3 Eigenvectors and Eigenvalues of the Infinitesimal Matrices of the Representations.- 3.2.4 Irreducible Representations.- 3.2.5 The Infinitesimal Matrices of an Irreducible Representation in the Canonical Basis.- 3.2.6 The Characters of the Rotation Matrices of a Representation.- 3.3 Spherical Harmonics.- 3.3.1 The Infinitesimal Operators in Spherical Coordinates.- 3.3.2 Spherical Harmonics.- 3.4 Spinor Representations.- 3.4.1 The Two-Dimensional Irreducible Representation.- 3.4.2 The Three-Dimensional Irreducible Representation.- 3.4.3 (2 j + 1)-Dimensional Irreducible Representations.- 3.5 Solved Problems.- 4 Pauli Spinors.- 4.1 Spin and Spinors.- 4.2 The Linearized Schrödinger Equations.- 4.2.1 The Free Particle.- 4.2.2 Particle in an Electromagnetic Field.- 4.2.3 The Spinors in Pauli´s Equation.- 4.3 Spinor and Vector Fields.- 4.3.1 The Transformation of a Vector Field by a Rotation.- 4.3.2 The Rotation of a Spinor Field.- 4.4 Solved Problems.- II Spinors in Four-Dimensional Space.- 5 The Lorentz Group.- 5.1 The Generalized Lorentz Group.- 5.1.1 Rotations and Reflections.- 5.1.2 Orthochronous and Anti-Orthochronous Transformations.- 5.1.3 Sheets of the Generalized Lorentz Group.- 5.2 The Four-Dimensional Rotation Group.- 5.2.1 Four-Dimensional Orthogonal Transformations.- 5.2.2 Matrix Representations of the Group SO (4).- 5.2.3 Infinitesimal Matrices.- 5.2.4 Irreducible Representations.- 5.3 Solved Problems.- 6 Representations of the Lorentz Groups.- 6.1 Irreducible Representations.- 6.1.1 Relations Between the Groups SO (3, 1)?andSO(4).- 6.1.2 Infinitesimal Matrices.- 6.1.3 Irreducible Representations.- 6.2 The Group SL(2,?).- 6.2.1 Two-Component Spinors.- 6.2.2 Higher-Order Spinors.- 6.2.3 Representations of the GroupsSL(2,?).- 6.2.4 Irreducible Representations.- 6.3 Spinor Representations of the Lorentz Group.- 6.3.1 Four-Dimensional Irreducible Representations.- 6.3.2 Two-Dimensional Representations.- 6.3.3 The Direct Product of Irreducible Representations.- 6.4 Solved Problems.- 7 Dirac Spinors.- 7.1 The Dirac Equation.