Neuerscheinungen 2012Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
James F. Doyle
Wave Propagation in Structures
Spectral Analysis Using Fast Discrete Fourier Transforms
2. Aufl. 2012. xiv, 321 S. XIV, 321 p. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2012
ISBN: 1-461-27304-8 (1461273048)
Neue ISBN: 978-1-461-27304-2 (9781461273042)
Preis und Lieferzeit: Bitte klicken
This book introduces spectral analysis as a means of investigating wave propagation and transient oscillations in structures. After developing the foundations of spectral analysis and the fast Fourier transform algorithm, the book provides a thorough treatment of waves in rods, beams, and plates, and introduces a novel matrix method for analysing complex structures as a collection of waveguides. The presentation includes an introduction to higher-order structural theories, the results of many experimental studies, practical applications, and source-code listings for many programs. An extensive bibliography provides an entry to the research literature. Intended as a textbook for graduate students of aerospace or mechanical engineering, the book will also be of interest to practising engineers in these and related disciplines.
1 Spectral Analysis of Wave Motion.- 1.1 Continuous Fourier Transforms.- 1.2 Discrete Fourier Transform.- 1.3 Examples Using the FFT Algorithm.- 1.4 Experimental Aspects of Wave Signals.- 1.5 Spectral Analysis of Wave Motion.- 1.6 Propagating and Reconstructing Waves.- Problems.- 2 Longitudinal Waves in Rods.- 2.1 Elementary Rod Theory.- 2.2 Basic Solution for Waves in Rods.- 2.3 Dissipation in Rods.- 2.4 Coupled Thermoelastic Waves.- 2.5 Reflections and Transmissions.- 2.6 Distributed Loading.- Problems.- 3 Flexural Waves in Beams.- 3.1 Bernoulli-Euler Beam Theory.- 3.2 Basic Solution for Waves in Beams.- 3.3 Bernoulli-Euler Beam with Constraints.- 3.4 Reflection of Flexural Waves.- 3.5 Curved Beams and Rings.- 3.6 Coupled Beam Structure.- Problems.- 4 Higher-Order Waveguides.- 4.1 Waves in Infinite Media.- 4.2 Semi-Infinite Media.- 4.3 Doubly Bounded Media.- 4.4 Doubly Bounded Media: Lamb Waves.- 4.5 Hamilton´s Principle.- 4.6 Modified Beam Theories.- 4.7 Modified Rod Theories.- Problems.- 5 The Spectral Element Method.- 5.1 Structures as Connected Waveguides.- 5.2 Spectral Element for Rods.- 5.3 Spectral Element for Beams.- 5.4 General Frame Structures.- 5.5 Structural Applications.- 5.6 Waveguides with Varying Cross Section.- 5.7 Spectral Super-Elements.- 5.8 Impact Force Identification.- Problems.- 6 Waves in Thin Plates.- 6.1 Plate Theory.- 6.2 Point Impact of a Plate.- 6.3 Wavenumber Transform Solution.- 6.4 Waves Reflected from a Straight Edge.- 6.5 Scattering of Flexural Waves.- 6.6 Lateral Boundary Conditions.- 6.7 Curved Plates and Shells.- Problems.- 7 Structure-Fluid Interaction.- 7.1 Acoustic Wave Motion.- 7.2 Plate-Fluid Interaction.- 7.3 Double Panel Systems.- 7.4 Waveguide Modeling.- 7.5 Radiation from Finite Plates.- 7.6 Cylindrical Cavity.- Problems.- 8 Thin-Walled Structures.- 8.1 Membrane Spectral Elements.- 8.2 Spectral Elements for Flexure.- 8.3 Folded Plate Structures.- 8.4 Structural Applications.- 8.5 Segmented Cylindrical Shells.- 8.6 Future of Spectral Elements.- Problems.- Afterword.- Appendix: Bessel Functions.- References.