Softcover reprint of the original 1st ed. 1976. 2012. x, 532 S. 1 SW-Abb.,. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK 2012
ISBN: 1-468-49454-6 (1468494546)
Neue ISBN: 978-1-468-49454-9 (9781468494549)
From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data."
There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.Interdependence of sections.- I Recursive Function Theory.- I. Turing machines.- 2. Elementary recursive and primitive recursive functions.- 3. Recursive functions; Turing computability.- 4. Markov algorithms.- 5. Recursion theory.- 6. Recursively enumerable sets.- 7. Survey of recursion theory.- II Elements of Logic.- 8. Sentential logic.- 9. Boolean algebra.- 10. Syntactics of first-order languages.- 11. Some basic results of first-order logic.- 12. Cylindric algebras.- III Decidable and Undecidable Theories.- 13. Some decidable theories.- 14. Implicit definability in number theories.- 15. General theory of undecidability.- 16. Some undecidable theories.- 17. Unprovability of consistency.- IV Model Theory.- 18. Construction of models.- 19. Elementary equivalence.- 20. Nonstandard mathematics.- 21. Complete theories.- 22. The interpolation theorem.- 23. Generalized products.- 24. Equational logic.- 25. Preservation and characterization theorems.- 26. Elementary classes and elementary equivalence.- 27. Types.- 28. Saturated structures.- V Unusual Logics.- 29. Inessential variations.- 30. Finitary extensions.- 31. Infinitary extensions.- Index of symbols.- Index of names and definitions.