 Neuerscheinungen 2012Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |

Daniel Mayenberger
Konstruktive und generische Gewinnung universeller Funktionen
Aufl. 2012. 88 S.
Verlag/Jahr: AV AKADEMIKERVERLAG 2012
ISBN: 3-639-42672-X (363942672X)
Neue ISBN: 978-3-639-42672-4 (9783639426724)
Preis und Lieferzeit: Bitte klicken
Inhaltlich unveränderte Neuauflage. Diese Arbeit befasst sich mit der konstruktiven und generischen Gewinnung universeller Funktionen. Unter einer universellen Funktion versteht man dabei eine solche holomorphe Funktion, die in gewissem Sinne ganze Klassen von Funktionen enthält. Es werden die Existenz universeller Laurentreihen, universeller Faberreihen und sehr spezieller translationsuniverseller Funktionen bewiesen. Diese translationsuniversellen Funktionen haben ihre Translate auf bestimmten Kurvenscharen. Die konstruktive Methode bein haltet die explizite Konstruktion einer universellen Funktion über einen Grenzprozess, etwa als Polynomreihe. Die generische Methode definiert zunächst rein abstrakt die jeweils gewünschte Klasse von universellen Funktionen. Mithilfe des Baireschen Dichtesatzes wird dann gezeigt, dass die Klasse dieser Funktionen nicht nur nichtleer, sondern sogar G und dicht in dem betrachteten Funktionenraum ist. Beide Methoden bedienen sich der Approximationssätze von Runge und von Mergelyan.