Neuerscheinungen 2012Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Sungbok Hong, John Kalliongis, Darryl McCullough
(Beteiligte)
Diffeomorphisms of Elliptic 3-Manifolds
2012. 2012. x, 155 S. 22 SW-Abb., 3 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2012
ISBN: 3-642-31563-1 (3642315631)
Neue ISBN: 978-3-642-31563-3 (9783642315633)
Preis und Lieferzeit: Bitte klicken
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.
The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
1 Elliptic 3-manifolds and the Smale Conjecture.- 2 Diffeomorphisms and Embeddings of Manifolds.- 3 The Method of Cerf and Palais.- 4 Elliptic 3-manifolds Containing One-sided Klein Bottles.- 5 Lens Spaces