Neuerscheinungen 2012Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Hans Grauert, Reinhold Remmert, O. Riemenschneider
(Beteiligte)
Analytische Stellenalgebren
Mitarbeit: Riemenschneider, O.
Softcover reprint of the original 1st ed. 1971. 2012. x, 242 S. IX, 240 S. 229 mm
Verlag/Jahr: SPRINGER, BERLIN 2012
ISBN: 3-642-65034-1 (3642650341)
Neue ISBN: 978-3-642-65034-5 (9783642650345)
Preis und Lieferzeit: Bitte klicken
Indocti discant, et ament meminisse periti 1. Die Idee der Riemannschen Flache wird in der Funktionentheorie mehrerer komplexer Veranderlichen erst seit Beginn der 50er Jahre konsequent verwendet. Wie in der Funktionentheorie einer Verander lichen muB man die Gebilde untersuchen, die durch groBtmogliche analytische Fortsetzung von holomorphen Funktionen entstehen. Die gleichen Griinde wie in der klassischen Funktionentheorie machen es notwendig, die Verzweigungspunkte hinzuzunehmen. Das fiihrte jedoch auf begriffiiche Schwierigkeiten, die 1933 H. Behnke und P. Thullen in ihrem Ergebnisbericht sogar veranlaBten, diese Punkte vorerst von der Betrachtung auszuschlieBen. Eine zufriedenstellende Definition des Ver zweigungsbegriffs wurde erst 1951 von H. Behnke und K. Stein (Math. Ann. 124) gegeben. Die von ihnen eingefiihrten komplex~n Riiume um fassen insbesondere die analytischen Gebilde holomorpher Funktiollen mehrerer Veranderlicher, d. h. die hOherdimensionalen Riemannschen Flachen. Dabei stellte sich heraus, daB diese Riemannschen Gebilde - anders als in der klassischen Funktionentheorie - Punkte ohne lokale Uniformisierende besitzen konnen. Solche Punkte wurden fort an singu lare Punkte genannt.
Hans Grauert studierte in Münster und Zürich, wo er 1958 promovierte. Seit dem 1. Oktober 1959 war er bis zu seiner Emeritierung ordentlicher Professor in Göttingen. Er hatte Gastprofessuren u.a. in Princeton und Paris. Er gilt als einer der bedeutendsten deutschen Mathematiker der Nachkriegszeit. Sein Spezialgebiet ist die Funktionentheorie mehrerer ´Veränderlicher´.