buchspektrum Internet-Buchhandlung

Neuerscheinungen 2012

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Jennifer Salau

Minimale Bahnen in klassischen hyperbolischen Räumen


Existenz und Eindeutigkeit minimaler Gruppenbahnen in Damek-Ricci-Räumen und Iwasawa-Typ-Lie-Gruppen
Aufl. 2012. 148 S. 220 mm
Verlag/Jahr: SÜDWESTDEUTSCHER VERLAG FÜR HOCHSCHULSCHRIFTEN 2012
ISBN: 3-8381-3304-8 (3838133048)
Neue ISBN: 978-3-8381-3304-1 (9783838133041)

Preis und Lieferzeit: Bitte klicken


Taucht man einen geschlossenen Draht in Seifenlauge, entstehen Flächen, deren Inhalt für die gegebenen Konturen ein relatives Minimum annimmt. Das Studium dieser Minimalflächen hat in und außerhalb der Mathematik große Bedeutung. Die mittlere Krümmung von Minimalflächen ist in jedem Punkt gleich 0. Verallgemeinernd nennt man Untermannigfaltigkeiten Riemannscher Mannigfaltigkeiten minimal, falls der mittlere Krümmungsvektor überall verschwindet. Eine Untermannigfaltigkeit, für die jede lokal kürzeste Verbindungslinie auch in der umgebenden Riemannschen Mannigfaltigkeit lokal Kürzeste ist, heißt total geodätisch. Solche Untermannigfaltigkeiten sind stets minimal; die Umkehrung gilt im Allgemeinen nicht. Diese Arbeit beschäftigt sich damit, die beiden Begriffe voneinander abzugrenzen. Für die hyperbolischen Räume über den komplexen Zahlen, Quaternionen und Oktonionen wird eine vollständige Klassifikation aller minimalen Gruppenbahnen der Isometriegruppe gegeben. Zudem werden Existenz und Eindeutigkeitsresultate für allgemeinere Beispielklassen formuliert.