buchspektrum Internet-Buchhandlung

Neuerscheinungen 2013

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

János Abonyi, µgnes Vathy-Fogarassy (Beteiligte)

Graph-Based Clustering and Data Visualization Algorithms


2013. 2013. xiii, 110 S. 62 SW-Abb., 8 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2013
ISBN: 1-447-15157-7 (1447151577)
Neue ISBN: 978-1-447-15157-9 (9781447151579)

Preis und Lieferzeit: Bitte klicken


This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
Vector Quantisation and Topology-Based Graph Representation

Graph-Based Clustering Algorithms

Graph-Based Visualisation of High-Dimensional Data