Neuerscheinungen 2013Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
János Abonyi, µgnes Vathy-Fogarassy
(Beteiligte)
Graph-Based Clustering and Data Visualization Algorithms
2013. 2013. xiii, 110 S. 62 SW-Abb., 8 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2013
ISBN: 1-447-15157-7 (1447151577)
Neue ISBN: 978-1-447-15157-9 (9781447151579)
Preis und Lieferzeit: Bitte klicken
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
Vector Quantisation and Topology-Based Graph Representation
Graph-Based Clustering Algorithms
Graph-Based Visualisation of High-Dimensional Data