Neuerscheinungen 2013Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
David F. Walnut
An Introduction to Wavelet Analysis
2013. xx, 452 S. 25 SW-Abb.,. 235 mm
Verlag/Jahr: SPRINGER, BASEL 2013
ISBN: 1-461-26567-3 (1461265673)
Neue ISBN: 978-1-461-26567-2 (9781461265672)
Preis und Lieferzeit: Bitte klicken
This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Preface
Part I: Preliminaries
Functions and Convergence
Fourier Series
The Fourier Transform
Signals and Systems
Part II: The Haar System
The Haar System
The Discrete Haar Transform
Part III: Orthonormal Wavelet Bases
Mulitresolution Analysis
The Discrete Wavelet Transform
Smooth, Compactly Supported Wavelets
Part IV: Other Wavelet Constructions
Biorthogonal Wavelets
Wavelet Packets
Part V: Applications
Image Compression
Integral Operators
Appendix A: Review of Advanced Calculus and Linear Algebra
Appendix B: Excursions in Wavelet Theory
Appendix C: References Cited in the Text
Index
"[This text] is carefully prepared, well-organized, and covers a large part of the central theory . . . [there are] chapters on biorthogonal wavelets and wavelet packets, topics which are rare in wavelet books. Both are important, and this feature is an extra argument in favour of [this] book . . . the material is accessible [even] to less advanced readers . . . the book is a nice addition to the series." -Zentralblatt Math
"This book can be recommended to everyone, especially to students looking for a detailed introduction to the subject." -Mathematical Reviews
"This textbook is an introduction to the mathematical theory of wavelet analysis at the level of advanced calculus. Some applications are described, but the main purpose of the book is to develop-using only tools from a first course in advanced calculus-a solid foundation in wavelet theory. It succeeds admirably. . . . Part I of the book contains 112 pages of preliminary material, consisting of four chapters on ´Functions and Convergence,´ ´Fourier Series,´ ´Fourier Transforms,´ and ´Signals and Systems.´ . . . This preliminary material is so well written that it could serve as an excellent supplement to a first course in advanced calculus. . . . The heart of the book is Part III: ´Orthonormal Wavelet bases.´ This material has become the canonical portion of wavelet theory. Walnut does a first-rate job explaining the ideas here. . . . Ample references are supplied to aid the reader. . . . There are exercises at the end of each section, 170 in all, and they seem to be consistent with the level of the text. . . . To cover the whole book would require a year. An excellent one-semester course could be based on a selection of chapters from Parts II, III, and V." -SIAM Review
"D. Walnut´s lovely book aims at the upper undergraduate level, and so it includes relatively more preliminary material . . . than is typically the case in a graduate text. It goes from Haar systems to multiresolutions, and then the discrete wavelet transform . . . The applications to image compression are wonderful, and the best I have seen in books at this level. I also found the analysis of the best choice of basis, and wavelet packet, especially attractive. The later chapters include MATLAB codes. Highly recommended!" -Bulletin of the AMS