buchspektrum Internet-Buchhandlung

Neuerscheinungen 2013

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Ulrich Daepp, Pamela Gorkin (Beteiligte)

Reading, Writing, and Proving


A Closer Look at Mathematics
2. Aufl. 2013. xiv, 378 S. XIV, 378 p. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK 2013
ISBN: 1-461-42915-3 (1461429153)
Neue ISBN: 978-1-461-42915-9 (9781461429159)

Preis und Lieferzeit: Bitte klicken


This book not only introduces proof techniques and other foundational principles of higher mathematics, but also helps students develop the necessary abilities to read, write and prove using mathematical definitions, examples and theorems.
This book, which is based on Pólya´s method of problem solving, aids students in their transition from calculus (or precalculus) to higher-level mathematics. The book begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends with suggested projects for independent study.

Students will follow Pólya´s four step approach: analyzing the problem, devising a plan to solve the problem, carrying out that plan, and then determining the implication of the result. In addition to the Pólya approach to proofs, this book places special emphasis on reading proofs carefully and writing them well. The authors have included a wide variety of problems, examples, illustrations and exercises, some with hints and solutions, designed specifically to improve the student´s ability to read and write proofs.

Historical connections are made throughout the text, and students are encouraged to use the rather extensive bibliography to begin making connections of their own. While standard texts in this area prepare students for future courses in algebra, this book also includes chapters on sequences, convergence, and metric spaces for those wanting to bridge the gap between the standard course in calculus and one in analysis.
-Preface. -1. The How, When, and Why of Mathematics.- 2. Logically Speaking.- 3.Introducing the Contrapositive and Converse.- 4. Set Notation and Quantifiers.- 5. Proof Techniques.- 6. Sets.- 7. Operations on Sets.- 8. More on Operations on Sets.- 9. The Power Set and the Cartesian Product.- 10. Relations.- 11. Partitions.- 12. Order in the Reals.- 13. Consequences of the Completeness of (\Bbb R).- 14. Functions, Domain, and Range.- 15. Functions, One-to-One, and Onto.- 16. Inverses.- 17. Images and Inverse Images.- 18. Mathematical Induction.- 19. Sequences.- 20. Convergence of Sequences of Real Numbers.- 21. Equivalent Sets.- 22. Finite Sets and an Infinite Set.- 23. Countable and Uncountable Sets.- 24. The Cantor-Schröder-Bernstein Theorem.- 25. Metric Spaces.- 26. Getting to Know Open and Closed Sets.- 27. Modular Arithmetic.- 28. Fermat´s Little Theorem.- 29. Projects.- Appendix.- References.- Index.
Ueli Daepp is an associate professor of mathematics at Bucknell University in Lewisburg, PA. He was born and educated in Bern, Switzerland and completed his PhD at Michigan State University. His primary field of research is algebraic geometry and commutative algebra.Pamela Gorkin is a professor of mathematics at Bucknell University in Lewisburg, PA. She also received her PhD from Michigan State where she worked under the director of Sheldon Axler. Prof. Gorkin´s research focuses on functional analysis and operator theory. Ulrich Daepp and Pamela Gorkin co-authored of the first edition of "Reading, Writing, and Proving" whose first edition published in 2003. To date the first edition (978-0-387-00834-9 ) has sold over 3000 copies.