Neuerscheinungen 2013Stand: 2020-01-07 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Igor Reider
Nonabelian Jacobian of Projective Surfaces
Geometry and Representation Theory
2013. viii, 227 S. VIII, 227 p. 23,5 cm
Verlag/Jahr: SPRINGER, BERLIN 2013
ISBN: 3-642-35661-3 (3642356613)
Neue ISBN: 978-3-642-35661-2 (9783642356612)
Preis und Lieferzeit: Bitte klicken
The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work´s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
1 Introduction.- 2 Nonabelian Jacobian J(X; L; d): main properties.- 3 Some properties of the filtration H.- 4 The sheaf of Lie algebras G.- 5 Period maps and Torelli problems.- 6 sl2-structures on F.-7 sl2-structures on G.- 8 Involution on G.- 9 Stratification of T.-10 Configurations and theirs equations.- 11 Representation theoretic constructions.- 12 J(X; L; d) and the Langlands Duality.
From the reviews:
"The book is well written, listing the main ideas in sections, and giving the successive results as they appear. The idea of a Jacobian on surfaces is new and important, and this book is the initiation of the study of this interesting object." (Arvid Siqveland, Mathematical Reviews, November, 2013)