buchspektrum Internet-Buchhandlung

Neuerscheinungen 2013

Stand: 2020-01-07
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Karlheinz Knapp

Vektorbündel


Vom Möbius-Bündel bis zum J-Homomorphismus
2014. 2013. xiii, 595 S. 49 SW-Abb. 240 mm
Verlag/Jahr: SPRINGER, BERLIN 2013
ISBN: 3-658-03113-1 (3658031131)
Neue ISBN: 978-3-658-03113-8 (9783658031138)

Preis und Lieferzeit: Bitte klicken


Vektorbündel stellen eine faszinierende Verbindung von Algebra und Topologie dar. Die bekanntesten Beispiele, das Möbiusband und das Tangentialbündel, veranschaulichen schon unmittelbar zwei Hauptaspekte.

Einmal geben Vektorbündel Hinweise auf die Gestalt eines Raumes - so deutet ein Möbiusband auf das Vorhandensein eines "Loches" hin -, andererseits lassen sich geometrische Objekte wie Mannigfaltigkeiten durch Vektorbündel linearisieren. Durch diese Nähe zur Geometrie hat die Vektorbündeltheorie nicht nur zahlreiche Anwendungen, so kann man beispielsweise schon mit geringen Voraussetzungen bis zur Lösung des Divisionsalgebrenproblems vordringen, sondern sie ist auch in vielen Gebieten der Mathematik Teil der grundlegenden Sprache. Der Text beginnt mit einer ausführlichen nur auf geringe Voraussetzungen aufbauenden Darstellung der Grundlagen. Er führt dann über das als zentrales Thema behandelte Schnittproblem bis zu einer Herleitung und Hintergrunddiskussion des Vektorfeldsatzes und des entsprechenden Satzes für stabile Bündel über Sphären. Er ist gedacht für alle, die die abstrakten Ideen und Techniken der algebraischen Topologie an ganz konkreten Situationen erproben, erlernen oder anwenden möchten.
Grundlagen.- Stabilisierungssequenz und charakteristische Klassen.- Vektorbündel und stabile Homotopie.
Prof. Dr. Karlheinz Knapp, Promotion und Habilitation an der Universität Bonn, seit 1979 Hochschullehrer an der Universität Wuppertal, lehrt und forscht seit vielen Jahren in der Mathematik mit Schwerpunkt Topologie