Neuerscheinungen 2014Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Ibrahim Dincer, Calin Zamfirescu
(Beteiligte)
Advanced Power Generation Systems
2014. 656 S. 235 mm
Verlag/Jahr: ELSEVIER BOOKS 2014
ISBN: 0-12-383860-6 (0123838606)
Neue ISBN: 978-0-12-383860-5 (9780123838605)
Preis und Lieferzeit: Bitte klicken
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems.
The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems.
The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration
Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass
Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses
Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Fundamentals of Thermodynamics
Energy, Environment, and Sustainable Development
Fossil Fuels and Alternatives
Hydrogen Fuel Cell Systems
Conventional Power Generating Systems
Nuclear Power Generation
Renewable-Energy-Based Power Generating Systems
Integrated Power Generating Systems
Multigeneration Systems
Novel Power Generating Systems