buchspektrum Internet-Buchhandlung

Neuerscheinungen 2014

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Rajesh Garg

Analysis and Design of Resilient VLSI Circuits


Mitigating Soft Errors and Process Variations
2010. 2014. xxii, 212 S. 28 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER US; SPRINGER 2014
ISBN: 1-489-98510-7 (1489985107)
Neue ISBN: 978-1-489-98510-1 (9781489985101)

Preis und Lieferzeit: Bitte klicken


VLSI design has grown more challenging due to detrimental effects of radiation particle strikes and processing variations. This book describes the design of resilient VLSI circuits, presenting algorithms and techniques to analyze and mitigate design problems.
This monograph is motivated by the challenges faced in designing reliable VLSI systems in modern VLSI processes. The reliable operation of integrated circuits (ICs) has become increasingly dif?cult to achieve in the deep submicron (DSM) era. With continuouslydecreasing device feature sizes, combinedwith lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations, and radiation-inducedsoft errors. Among these noise sources, soft errors(or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as c- binational logic circuits. Also, in the DSM era, process variations are increasing at a signi?cant rate, making it more dif?cult to design reliable VLSI circuits. Hence, it is important to ef?ciently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this research mo- graph presents several analysis and design techniques with the goal of realizing VLSI circuits, which are radiation and process variation tolerant.
Soft Errors.- Analytical Determination of Radiation-induced Pulse Width in Combinational Circuits.- Analytical Determination of the Radiation-induced Pulse Shape.- Modeling Dynamic Stability of SRAMs in the Presence of Radiation Particle Strikes.- 3D Simulation and Analysis of the Radiation Tolerance of Voltage Scaled Digital Circuits.- Clamping Diode-based Radiation Tolerant Circuit Design Approach.- Split-output-based Radiation Tolerant Circuit Design Approach.- Process Variations.- Sensitizable Statistical Timing Analysis.- A Variation Tolerant Combinational Circuit Design Approach Using Parallel Gates.- Process Variation Tolerant Single-supply True Voltage Level Shifter.- Conclusions and Future Directions.