Neuerscheinungen 2014Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Michel L. Lapidus, Machiel van Frankenhuijsen
(Beteiligte)
Fractal Geometry, Complex Dimensions and Zeta Functions
Geometry and Spectra of Fractal Strings
2. Aufl. 2014. xxvi, 570 S. 3 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK; SPRINGER 2014
ISBN: 1-489-98838-6 (1489988386)
Neue ISBN: 978-1-489-98838-6 (9781489988386)
Preis und Lieferzeit: Bitte klicken
In its Second Edition, this in-depth study of the vibrations of fractal strings interlinks number theory, spectral geometry and fractal geometry. Includes a geometric reformulation of the Riemann hypothesis and a new final chapter on recent topics and results.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.
Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Preface.- Overview.- Introduction.- 1. Complex Dimensions of Ordinary Fractal Strings.- 2. Complex Dimensions of Self-Similar Fractal Strings.- 3. Complex Dimensions of Nonlattice Self-Similar Strings.- 4. Generalized Fractal Strings Viewed as Measures.- 5. Explicit Formulas for Generalized Fractal Strings.- 6. The Geometry and the Spectrum of Fractal Strings.- 7. Periodic Orbits of Self-Similar Flows.- 8. Fractal Tube Formulas.- 9. Riemann Hypothesis and Inverse Spectral Problems.- 10. Generalized Cantor Strings and their Oscillations.- 11. Critical Zero of Zeta Functions.- 12 Fractality and Complex Dimensions.- 13. Recent Results and Perspectives.- Appendix A. Zeta Functions in Number Theory.- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics.- Appendix C. An Application of Nevanlinna Theory.- Bibliography.- Author Index.- Subject Index.- Index of Symbols.- Conventions.- Acknowledgements.