buchspektrum Internet-Buchhandlung

Neuerscheinungen 2014

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Branko Grünbaum, Peter Johnson, Cecil Rousseau, Alexander Soifer (Beteiligte)

The Mathematical Coloring Book


Mathematics of Coloring and the Colorful Life of its Creators
Mitarbeit: Grünbaum, Branko; Johnson, Peter; Rousseau, Cecil
2009. 2014. xxx, 607 S. 345 SW-Abb., 8 Farbabb., 8 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK; SPRINGER 2014
ISBN: 1-489-99626-5 (1489996265)
Neue ISBN: 978-1-489-99626-8 (9781489996268)

Preis und Lieferzeit: Bitte klicken


This book covers the Ramsey Theory, from its history to its famous problems. It also offers studies of Issai Schur, Pierre Joseph, Henry Baudet, and B.L. van der Waerden, incorporating photos and correspondence never before published.
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.
Merry-Go-Round.- A Story of Colored Polygons and Arithmetic Progressions.- Colored Plane.- Chromatic Number of the Plane: The Problem.- Chromatic Number of the Plane: An Historical Essay.- Polychromatic Number of the Plane and Results Near the Lower Bound.- De Bruijn-Erd?s Reduction to Finite Sets and Results Near the Lower Bound.- Polychromatic Number of the Plane and Results Near the Upper Bound.- Continuum of 6-Colorings of the Plane.- Chromatic Number of the Plane in Special Circumstances.- Measurable Chromatic Number of the Plane.- Coloring in Space.- Rational Coloring.- Coloring Graphs.- Chromatic Number of a Graph.- Dimension of a Graph.- Embedding 4-Chromatic Graphs in the Plane.- Embedding World Records.- Edge Chromatic Number of a Graph.- Carsten Thomassen´s 7-Color Theorem.- Coloring Maps.- How the Four-Color Conjecture Was Born.- Victorian Comedy of Errors and Colorful Progress.- Kempe-Heawood´s Five-Color Theorem and Tait´s Equivalence.- The Four-Color Theorem.- The Great Debate.- How Does One Color Infinite Maps? A Bagatelle.- Chromatic Number of the Plane Meets Map Coloring: Townsend-Woodall´s 5-Color Theorem.- Colored Graphs.- Paul Erd?s.- De Bruijn-Erd?s´s Theorem and Its History.- Edge Colored Graphs: Ramsey and Folkman Numbers.- The Ramsey Principle.- From Pigeonhole Principle to Ramsey Principle.- The Happy End Problem.- The Man behind the Theory: Frank Plumpton Ramsey.- Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath.- Ramsey Theory Before Ramsey: Hilbert´s Theorem.- Ramsey Theory Before Ramsey: Schur´s Coloring Solution of a Colored Problem and Its Generalizations.- Ramsey Theory before Ramsey: Van der Waerden Tells the Story of Creation.- Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet.- Monochromatic Arithmetic Progressions: Life After Van der Waerden.- In Search of Van der Waerden: The Early Years.- In Search of Van der Waerden: The Nazi Leipzig, 1933-1945.- In Search of Van der Waerden: The Postwar Amsterdam, 1945166.- In Search of Van der Waerden: The Unsettling Years, 1946-1951.- Colored Polygons: Euclidean Ramsey Theory.- Monochromatic Polygons in a 2-Colored Plane.- 3-Colored Plane, 2-Colored Space, and Ramsey Sets.- Gallai´s Theorem.- Colored Integers in Service of Chromatic Number of the Plane: How O´Donnell Unified Ramsey Theory and No One Noticed.- Application of Baudet-Schur-Van der Waerden.- Application of Bergelson-Leibman´s and Mordell-Faltings´ Theorems.- Solution of an Erd?s Problem: O´Donnell´s Theorem.- Predicting the Future.- What If We Had No Choice?.- A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures.- Imagining the Real, Realizing the Imaginary.- Farewell to the Reader.- Two Celebrated Problems.