buchspektrum Internet-Buchhandlung

Neuerscheinungen 2014

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

M. Ram Murty, Purusottam Rath (Beteiligte)

Transcendental Numbers


2014. 2014. xiv, 217 S. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER NEW YORK 2014
ISBN: 1-493-90831-6 (1493908316)
Neue ISBN: 978-1-493-90831-8 (9781493908318)

Preis und Lieferzeit: Bitte klicken


This text introduces transcendental numbers, focusing on the Schneider-Lang theorem; Bakerīs theorem and its applications to the transcendence of special values of L-series; elliptic curve theory; the emerging theory of multiple zeta values and more.
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Bakerīs theorem, Schanuelīs conjecture, and Schneiderīs theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L -functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
1. Liouvilleīs theorem.- 2. Hermiteīs Theorem.- 3. Lindemannīs theorem.- 4. The Lindemann-Weierstrass theorem.- 5. The maximum modulus principle.- 6. Siegelīs lemma.- 7. The six exponentials theorem.- 8. Estimates for derivatives.- 9. The Schneider-Lang theorem.- 10. Elliptic functions.- 11. Transcendental values of elliptic functions.- 12. Periods and quasiperiods.- 13. Transcendental values of some elliptic integrals.- 14. The modular invariant.- 15. Transcendental values of the j-function.- 16. More elliptic integrals.- 17. Transcendental values of Eisenstein series.- 18. Elliptic integrals and hypergeometric series.- 19. Bakerīs theorem.- 20. Some applications of Bakerīs theorem.- 21. Schanuelīs conjecture.- 22. Transcendental values of some Dirichlet series.- 23. Proof of the Baker-Birch-Wirsing theorem.- 24. Transcendence of some infinite series.- 25. Linear independence of values of Dirichlet L-functions.- 26. Transcendence of values of modular forms.- 27. Transcendence of values of class group L-functions.- 28. Periods, multiple zeta functions and (3).
M. Ram Murty is a professor of mathematics at Queenīs University. Purusottam Rath is a professor of mathematics at the Chennai Mathematical Institute.