Neuerscheinungen 2014Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Ran He, Baogang Hu, Xiaotong Yuan
(Beteiligte)
Robust Recognition via Information Theoretic Learning
2014. 2014. xi, 110 S. 4 SW-Abb., 25 Farbabb., 12 Tabellen. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2014
ISBN: 3-319-07415-6 (3319074156)
Neue ISBN: 978-3-319-07415-3 (9783319074153)
Preis und Lieferzeit: Bitte klicken
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.
The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Introduction.- M-estimators and Half-quadratic Minimization.- Information Measures.- Correntropy and Linear Representation.- 1 Regularized Correntropy.- Correntropy with Nonnegative Constraint.