Neuerscheinungen 2014Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
ANTONIO GI de BARBOSA DE LIMA, JoĈo M. P. Q. Delgado, Marta Vázquez da Silva
(Beteiligte)
Numerical Analysis of Heat and Mass Transfer in Porous Media
Herausgegeben von Delgado, J.M.P.Q.; de BARBOSA DE LIMA, ANTONIO GILSON; da Silva, Marta Vázquez
2012. 2014. viii, 316 S. 235 mm
Verlag/Jahr: SPRINGER, BERLIN 2014
ISBN: 3-642-43031-7 (3642430317)
Neue ISBN: 978-3-642-43031-2 (9783642430312)
Preis und Lieferzeit: Bitte klicken
This book reviews recent results in computational heat and mass transfer in porous media, discussing the numerical transport phenomenon and presenting important theoretical and computational developments in porous media and the transport phenomenon domain.
The purpose of ´Numerical Analysis of Heat and Mass Transfer in Porous Media´ is to provide a collection of recent contributions in the field of computational heat and mass transfer in porous media. The main benefit of the book is that it discusses the majority of the topics related to numerical transport phenomenon in engineering (including state-of-the-art and applications) and presents some of the most important theoretical and computational developments in porous media and transport phenomenon domain, providing a self-contained major reference that is appealing to both the scientists, researchers and the engineers. At the same time, these topics encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.
Numerical Analysis of Mass Transfer around a Sphere Buried in Porous Media: Concentration Contours and Boundary Layer Thickness.- Unsaturated-Saturated Flow in Porous Media under Centrifugation.- Applying Computational Analysis in Studies of Resin Transfer Moulding.- Mass Transport in Growing Porous Media.- Modeling the Pore Level Fluid Flow in Porous Media using the Immersed Boundary Method.- Computer Simulation of Nanoparticles Deposition.- A Comparison of Thermal Dispersion Behaviour in High-Conductivity Porous Media of Various Pore Geometries.- Assessment of Heat Affected Zone of Submerged Arc Welding Process through Digital Image Processing.- Study of diffusion in a one-dimensional lattice-gas model of zeolites: The analytical approach and kinetic Monte Carlo simulations.- Contaminant transport in partially saturated porous.- Three-dimensional diffusion in arbitrary domain using generalized coordinates for the boundary condition of the first kind.- Convection and heat transfer of viscoelastic fluids saturated a porous medium.- Unsteady Heat Conduction from Spheroids.