buchspektrum Internet-Buchhandlung

Neuerscheinungen 2014

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

W. Beekmann, Karl Zeller (Beteiligte)

Theorie der Limitierungsverfahren


2. Aufl. 2014. xii, 316 S. 1 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER 2014
ISBN: 3-642-88471-7 (3642884717)
Neue ISBN: 978-3-642-88471-9 (9783642884719)

Preis und Lieferzeit: Bitte klicken


Erstes Kapitel Grundbegriffe der Limitierung.- 1. Zusammenfassung.- 2. Geschichte der Limitierungstheorie.- 3. Allgemeine Limitierungstheorie.- 4. Matrixverfahren.- 5. Hauptprobleme.- 6. Nichtmatrixverfahren.- 7. Absolute Limitierbarkeit.- 8. Limitierung von Mehrfachfolgen.- 9. Integraltransformationen.- 10. Sonstiges.- Zweites Kapitel Hilfsmittel aus der Funktionalanalysis.- 11. Zusammenfassung.- 12. Lineare Räume.- 13. Einfache Sätze über lineare Räume.- 14. Das Fortsetzungsprinzip.- 15. Stetigkeitssätze.- 16. Grundmenge und Basis.- 17. FK-Räume.- 18. Matrizenrechnung.- 19. Banach-Algebren und Fourier-Transformation.- 20. Sonstiges.- Drittes kapitel Struktur von Wirkfeldern.- 21. Zusammenfassung.- 22. Wirkfelder als FK-Räume.- 23. Perfekte Verfahren.- 24. Abschnittskonvergenz.- 25. Allgemeine Limitierbarkeitskriterien.- 26. Einfolgenverfahren.- 27. Vorgeschriebenes Wirkfeld.- 28. Inäquivalenzsätze.- 29. Beschränkte Folgen.- 30. Sonstiges.- Viertes Kapitel Direkte Sätze.- 31. Zusammenfassung.- 32. Einschließungssätze.- 33. Kernsätze.- 34. Konvergenzfaktoren.- 35. Vergleichssätze.- 36. Verträglichkeit.- 37. Varianten der Vergleichssätze.- 38. Translation und Umordnung.- 39. Multiplikationssätze.- 40. Sonstiges.- Fünftes Kapitel Umkehrsätze.- 41. Zusammenfassung.- 42. Wachstumsbedingungen.- 43. Konvergenzgleiche Verfahren.- 44. Lückenumkehrsätze.- 45. Elementare Umkehrsätze.- 46. Optimale Umkehrbedingungen.- 47. Tieferliegende Umkehrsätze.- 48. Die Methoden von Littlewood, Wiener, Karamata und Schmidt.- 49. Funktionentheoretische Umkehrsätze und Beweise.- 50. Sonstige Umkehrsätze.- Sechstes Kapitel Verfahren vom Cesàro-Abel-Typ.- 51. Zusammenfassung.- 52. Arithmetische und bewichtete Mittel.- 53. Cesàro-Verfahren.- 54. Hölder- und Cesàro-Verfahren.- 65. Das Abel-Verfahren.- 56. Mehrfachfolgen.- 57. Integraltransformationen.- 58. Die Laplace-Transformation.- 59. Riesz- und Dirichlet- Verfahren.- 60. Sonstiges.- Siebentes Kapitel Verfahren funktionentheoretischen Typs.- 61. Zusammenfassung.- 62. Zweierverfahren.- 63. Das Nörlund-Verfahren.- 64. Die Verfahren von Euler-Knopp.- 65. Allgemeine Euler- Verfahren.- 66. Boril-Verfahren.- 67. Varianten des Borel-Verfahrens.- 68. Kreisverfahren.- 69. Analytische Fortsetzung.- 70. Sonstiges.- Achtes Kapitel Weitere Verfahren und Klassen.- 71. Zusammenfassung.- 72. Hausdorff-Verfahren.- 73. Das Verfahren von de la Vallée-Poussin.- 74. Gronwall-Verfahren.- 75. Rogosinski-Bernstein-Verfahren.- 76. Riemann-Verfahren.- 77. Zahlentheoretische Verfahren.- 78. Wiener-Verfahren.- 79. Klassen von Verfahren.- 80. Sonstiges.- Ergänzungen.- 6. Nichtmatrixverfahren.- 7. Absolute Limitierung.- 8.-9. Mehrfachfolgen, Integralverfahren.- 10. Sonstiges.- 18. Matrizenrechnung.- 22. Wirkfelder als FK-Räume.- 23. Perfekte Verfahren.- 24. Abschnittskonvergenz.- 25. Allgemeine Limitierbarkeitskriterien.- 26. Einfolgenverfahren.- 27. Vorgeschriebenes Wirkfeld.- 28. Inäquivalenzsätze.- 29. Beschränkte Folgen.- 32. Einschließungssätze.- 33. Kernsätze.- 34. Konvergenzfaktoren.- 35. Vergleichssätze.- 36. Verträglichkeit.- 37. Varianten der Vergleichssätze.- 38. Translation und Umordnung.- 39. Multiplikation.- 42. Wachstumsbedingungen.- 43. Konvergenzgleiche Verfahren.- 44. Lückenumkehrsätze.- 45.-47. Umkehrsätze.- 48. Die Methoden von Littlewood, Wiener, Karamata und Schmidt.- 49. Funktionentheoretische Umkehrsätze und Beweise.- 50. Sonstige Umkehrsätze.- 52. Arithmetische und bewichtete Mittel.- 53. Cesàro-Verfahren.- 54. Hölder- und Cesàro-Verfahren.- 55. Abel-Verfahren.- 56. Mehrfachfolgen.- 57. Integralverfahren.- 58. Die Laplace-Transformation.- 59. Riesz- und Dirichlet-Verfahren.- 62. Zweier-Verfahren.- 63. Nörlund-Verfahren.- 64. Verfahren von Euler-Knopp.- 65. Allgemeine Euler-Verfahren.- 66. Borel- Verfahren.- 67. Varianten des Borel-Verfahrens.- 68. Kreisverfahren.- 69. Analytische Fortsetzung.- 70. Sonstiges. Jakimovski-Verfahren.- 72. Hausdorff-Verfahren.