![buchspektrum Internet-Buchhandlung](../buchspektrumlogo.gif) Neuerscheinungen 2014Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
![](https://multimedia.knv.de/cover/48/93/33/4893333400001n.jpg)
Takahiro Sagawa
Thermodynamics of Information Processing in Small Systems
2013. 2014. xvi, 120 S. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER JAPAN; SPRINGER 2014
ISBN: 4-431-54752-5 (4431547525)
Neue ISBN: 978-4-431-54752-5 (9784431547525)
Preis und Lieferzeit: Bitte klicken
This book presents a general theory of nonequilibrium thermodynamics for information processing, offering a recently constructed theory of information thermodynamics in which information contents and thermodynamic variables are treated on an equal footing.
This thesis presents a general theory of nonequilibrium thermodynamics for information processing. Ever since Maxwell´s demon was proposed in the nineteenth century, the relationship between thermodynamics and information has attracted much attention because it concerns the foundation of the second law of thermodynamics. From the modern point of view, Maxwell´s demon is formulated as an information processing device that performs measurement and feedback at the level of thermal fluctuations. By unifying information theory, measurement theory, and the recently developed theory of nonequilibrium statistical mechanics, the author has constructed a theory of "information thermodynamics," in which information contents and thermodynamic variables are treated on an equal footing. In particular, the maximum work that can be extracted by the demon and the minimum work that is needed for measurement and information erasure by the demon has been determined. Additionally, generalizations of nonequilibrium relations such as a Jarzynski equality for classical stochastic systems in the presence of feedback control have been derived. One of the generalized equalities has recently been verified experimentally by using sub-micron colloidal particles. The results obtained serve as fundamental principles for information processing in small thermodynamic systems, and are applicable to nanomachines and nanodevices.
Review of Maxwell´s Demon.- Classical Dynamics, Measurement, and Information.- Quantum Dynamics, Measurement, and Information.- Unitary Proof of the Second Law of Thermodynamics.- Second Law with Feedback Control.- Thermodynamics of Memories.- Stochastic Thermodynamics.- Nonequilibrium Equalities with Feedback Control.-Conclusions.
Dr. Takahiro Sagawa
Kyoto University
Kitashirakawa Oiwake-Cho,
Sakyo-Ku, Kyoto
606-8502 Japan