buchspektrum Internet-Buchhandlung

Neuerscheinungen 2014

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Yiannos Manoli, Dirk Spreemann (Beteiligte)

Electromagnetic Vibration Energy Harvesting Devices


Architectures, Design, Modeling and Optimization
2012. 2014. xviii, 198 S. 235 mm
Verlag/Jahr: SPRINGER NETHERLANDS; SPRINGER 2014
ISBN: 9400799551 (9400799551)
Neue ISBN: 978-9400799554 (9789400799554)

Preis und Lieferzeit: Bitte klicken


This book examines eight different commonly applied coupling architectures for electromagnetic vibration transducers used to harvest ambient energy for the supply of sensor monitoring systems. It identifies the architectures with the best output performance.
Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design-flow. Electromagnetic Vibration Energy Harvesting Devices targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance.
List Of Figures. List Of Tables. Nomenclature. Acknowledgements.

1 Introduction. 1.1 Background And Motivation Of Vibration Energy Harvesting. 1.2 Literature Review And "State Of The Art" In Electromagnetic Vibration Transducers. 1.3 Conclusions From The Literature Review. 1.4 Thesis Objectives.

2 Basic Analytical Tools For The Design Of Resonant Vibration Transducers. 2.1 Introduction. 2.2 Mechanical Subsystem. 2.3 Electromagnetic Subsystem. 2.4 Overall System. 2.5 Characterization And Handling Of Machinery Induced Vibration. 2.6 Conclusions From Analytical Analyses.

3 Power And Voltage Optimization Approach. 3.1 Introduction. 3.2 Investigated Electromagnetic Coupling Architectures. 3.3 Boundary Conditions. 3.4 Magnetic Field Distribution Of Cylindrical And Rectangular Permanent Magnets. 3.5 Optimization Procedure. 3.6 Architecture Specific Calculation Of The Transduction Factor.

4 Optimization Results And Comparison. 4.1 Introduction. 4.2 "Magnet In-Line Coil" Architectures. 4.3 "Magnet Across Coil" Architectures. 4.4 Conclusion And Comparison Of The Coupling Architectures.

5 Experimental Verification Of The Simulation Models. 5.1 Introduction. 5.2 "Magnet In-Line Coil" Architecture. 5.3 "Magnet Across Coil" Architecture. 5.4 Conclusions.

6 Coil Topology Optimization For Transducers Based On Cylindrical Magnets. 6.1 Introduction. 6.2 Formulation Strategy. 6.3 Results Of The Topology Optimization.

7 Application Oriented Design Of A Prototype Vibration Transducer. 7.1 Introduction. 7.2 Basis For The Development. 7.3 Optimization Of The Prototype Electromagnetic Coupling Architecture. 7.4 Resonator Design. 7.5 Prototype Assembling And Performance. 7.6 Conclusions.

8 Conclusions. 8.1 Overview Of Main Findings. 8.2 Suggestions For Further Work.

Appendix A. Appendix B. Appendix C. Appendix D. Preliminary Investigations. Non-resonant vibration transducer. Low frequency tunable transducer. Bibliography.