buchspektrum Internet-Buchhandlung

Neuerscheinungen 2015

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Hermann Rau

Grundlagen der Elektronenspektroskopie


Theorie der Anregung und Deaktivierung von Molekülen
2015. 350 S. m. 89 Abb. u. 10 Tab. 24,5 cm
Verlag/Jahr: WILEY-VCH 2015
ISBN: 3-527-33903-5 (3527339035)
Neue ISBN: 978-3-527-33903-7 (9783527339037)

Preis und Lieferzeit: Bitte klicken


Quantenmechanische Aspekte der Erzeugung und Deaktivierung angeregter Elektronenzustände stellen die theoretische Grundlage der Elektronenspektroskopie dar. Ausgehend vom Experiment wird zunächst die Beschreibung von Molekülzuständen durch Wellenfunktionen eingeführt. Didaktisch geschickt folgt eine ausführliche Diskussion der Erzeugung von angeregten Zuständen, zusätzlich wird auch das Thema "optische Aktivität" erläutert. Die verschiedenen Kanäle der Deaktivierung angeregter Zustände werden umfassend diskutiert, mit einem besonderen Schwerpunkt auf strahlungsloser Deaktivierung durch Elektronenübertragung. Aufbauend auf langjährigen Vorlesungsnotizen optimal zum vorlesungsbegleitenden Lernen, Dank des modularen Aufbaues aber auch zum punktuellen Nachschlagen und Auffrischen von Wissen geeignet!
Einleitung
Experimentelle Daten
Was beobachtet man bei Versuchen zur UV/VIS-Spektroskopie?
Teil I: Zustände
Der Zustandsraum
Materiewellen und Wellenfunktionen
Quantelung
Die elektronische psi-Funktion
Der Zugang zur psi-Funktion
Zustände
Die Lösungen der Schrödingergleichung
Der vollständige Zustandsraum
Der unvollständige Zustandsraum
Die Energie im Zustandsraum
Der Elektronenspin
Beschreibung von Molekülzuständen durch Wellenfunktionen
Elektronen und Kerne: Molekülschwingungen und die Born-Oppenheimer-Näherung
Ermittlung der psi-Funktionen von Elektronenzuständen
Das Variationsprinzip der Quantenmechanik
Einelektronenverfahren
Mehrelektronenverfahren
Verfahren ohne Antisymmetrisierung: Hartee-Verfahren
Verfahren mit Antisymmetrisierung
Die Basisfunktionen
Zwei Beispiele
Symmetrie
Butadien und die Charakterentafeln mit irreduziblen Darstellungen
Benzol und die mehrdimensionalen Darstellungen
Formaldehyd, sigma, n- und Pi-Elektronen
Teil II : Absorption - Erzeugung von angeregten Zuständen
Anregung von "reinen" Zuständen
Zeitabhängige Störungstheorie
Der Störoperator des Strahlungsfeldes
Die Störung eines molekularen Systems durch ein elektro-magnetisches Wechselfeld
Die Dipolnäherung
Höhere Multipolnäherungen
Auswahlregeln
Vibronische Zustände, Franck-Condon Prinzip
Optische Aktivität
Phänomen
Der Störoperator für die optische Aktivität
Die Absorption von unpolarisiertem Licht durch eine enantiomere Form chiraler Moleküle
Die Absorption von zirkular polarisiertem Licht durch eine enantiomere Form chiraler Moleküle
Mischung von Zuständen durch Störpotentiale
Zeitunabhängige Störungstheorie
Schwingungsinduzierte Übergänge
Singlet-Triplet-Übergänge
Mischung von Singlet- und Triplet-Zuständen
Der Spin-Bahn-Wechselwirkungsoperator
Der Spinteil des Spin-Bahn-Wechselwirkungsoperators
Der Bahn-Teil des Spin-Bahn-Wechselwirkungsoperators
Ein Beispiel
Molekülaggregate
Der Grundzustand eines Dimeren
Anregungszustände
Auswahlregeln
Höhere Aggreggate
Induzierte Optische Aktivität
Asymmetrische Störung durch Punktladungen
Das dissymetrische Störpotential
Die Quellen des Störpotentials
Asymmetrische Störung durch isotrop polarisierbare Gruppen
Störung durch anisotrop polarisierbare Gruppen
Magnetisch dipol-erlaubte Übergänge
Elektrisch dipol-erlaubte Übergänge
Das Wechselwirkungspotential
Die Rotatorstärke
Sektorenregeln
Teil III: Deaktivierung angeregter Zustände
Der angeregte Zustand
Eigenzustände und Nicht-Eigenzustände
Deaktivierungsprozesse
Deaktivierung durch Strahlung
Der Anregungszustand
Stimulierte Emission
Spontane Emission
Die Einsteinkoeffizienten
Die Lebensdauern
Lichtverstärkung
Strahlungslose Deaktivierung
Internal Conversion (IC)
Präparation des Ausgangszustandes und seine Deaktivierung
Der "Mechanismus" der Strahlungslosen Deaktivierung
Allgemeine Beschreibung der Kopplung zweier Elektronenzustände. Das Modell von Robinson und Frosch
Der Kopplungsoperator: der kernkinetische Operator
Modellvorstellungen der strahlungslosen Deaktivierung, Kopplung der vibronischen Zustände
Definition des Modells
Die Franck-Condon-Faktoren
Zusammenfassung
Intersystem Crossing (ISC)
Energieübertragung
Singlet-Singlet Energieübertragung, der Förster-Mechanismus
Triplet-Triplet-Energieübertragung, der Dexter Mechanismus
Zusammenfassung
Elektronenübertragung
Die klassische und halbklassische Theorien der Elektronenübertragung
Die klassische Marcus-Theorie der outer-sphere Elektronenübertragung, die Rolle des Lösungsmittels
Die Wahrscheinlichkeit des Elektronensprungs
Die quantenmechanische Behandlung der ET-Reaktion
Die Beschreibung des gequantelten ET-Systems
Die elektronische Kopplung beim Elektronenübergang
Die vibronischen Zustände beim Elektronenübergang
Die Trennung der Behandlung der inneren und der äußeren Sphäre
Nuclear Tunnelling
Anhang