buchspektrum Internet-Buchhandlung

Neuerscheinungen 2015

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Daniel Heck

Automatisches Beweisen mittels Gröbnerbasen in der Geometrie


Dualität regelmäßiger Körper
2015. 412 S. 220 mm
Verlag/Jahr: AV AKADEMIKERVERLAG 2015
ISBN: 3-639-84097-6 (3639840976)
Neue ISBN: 978-3-639-84097-1 (9783639840971)

Preis und Lieferzeit: Bitte klicken


In dieser Arbeit wird durch das automatische Beweisen mittels Gröbnerbasen die Dualität der dreidimensionalen regelmäßigen Polyedern sowie die Dualität von ausgewählten vierdimensonalen regelmäßigen Polytopen nachgewiesen. Bei den dreidimensionalen regelmäßigen Polyeder handelt es sich um die platonischen Körper. Diese sind der Tetra-, Hexa-, Okta-, Dodeka- und Ikosaeder. Der Hexaeder ist der bekannte Würfel. Er ist dual zum Oktaeder. Das bedeutet, dass die Flächenmittelpunkte aller Flächen des Hexaeders einen Oktaeder bilden. Umgekehrt gilt bei den regelmäßigen Körpern die gleiche Beziehung. Diese Beziehung ist in der Mathematik schon lange bekannt und kann geometrisch leicht erklärt werden. Wie im dreidimensionalen Raum gibt es auch in höherdimensionalen Räumen regelmäßige Polytope. Diese besitzen ebenfalls duale Beziehungen untereinander. Die vierte Dimension nimmt hierbei eine Sonderstellung ein, da es nur dort ein regelmäßiges Polytop, das 24-Zell, gibt, dass in keiner anderen Dimension ein Pendant besitzt. Ab der fünften Dimension existieren nur noch die Pendants zum Würfel, Oktaeder und Tetraeder.
Daniel Heck, Jahrgang 1989, studierte an der Universität Koblenz-Landau Campus Koblenz von 2009 - 2014 lehramtsbezogen Mathematik und Informatik und beendete sein Studium mit dem Master of Education.