buchspektrum Internet-Buchhandlung

Neuerscheinungen 2017

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Joshua F. Wiley, Matt Wiley (Beteiligte)

Advanced R


Data Programming and the Cloud
1st ed. 2017. xix, 279 S. 37 SW-Abb., 40 Farbabb. 254 mm
Verlag/Jahr: SPRINGER, BERLIN; APRESS 2017
ISBN: 1-484-22076-5 (1484220765)
Neue ISBN: 978-1-484-22076-4 (9781484220764)

Preis und Lieferzeit: Bitte klicken



Program for data analysis using R and learn practical skills to make your work more efficient. This book covers how to automate running code and the creation of reports to share your results, as well as writing functions and packages. Advanced R is not designed to teach advanced R programming nor to teach the theory behind statistical procedures. Rather, it is designed to be a practical guide moving beyond merely using R to programming in R to automate tasks.

This book will show you how to manipulate data in modern R structures and includes connecting R to data bases such as SQLite, PostgeSQL, and MongoDB. The book closes with a hands-on section to get R running in the cloud. Each chapter also includes a detailed bibliography with references to research articles and other resources that cover relevant conceptual and theoretical topics.

What You Will Learn

Write and document R functions
Make an R package and share it via GitHub or privately
Add tests to R code to insure it works as intended
Build packages automatically with GitHub
Use R to talk directly to databases and do complex data management
Run R in the Amazon cloud
Generate presentation-ready tables and reports using R
Who This Book Is For

Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to take their R coding and programming to the next level.
Programming 1.Programming Basics 2.Programming Utilities 3.Loops, flow control, and apply functions 4.Writing Functions 5.Writing Classes and Methods 6.Writing a Package Data Management 7.Data Management using data.table 8.Data Munging With data.table 9.Other Tools for Data Management 10.Reading Big Data(bases) Cloud Computing 11.Getting a Cloud 12.Ubuntu for Windows Users 13.Every Cloud has a Shiny lining... 14.Shiny Dashboard Sampler 15.Dynamic Reports and the Cloud References (backmatter)
Joshua F. Wiley is a lecturer in the Monash Institute for Cognitive and Clinical Neurosciences and School of Psychological Sciences at Monash University and a senior partner at Elkhart Group Limited, a statistical consultancy. He earned his PhD from the University of California, Los Angeles, and his research focuses on using advanced quantitative methods to understand the complex interplays of psychological, social, and physiological processes in relation to psychological and physical health. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. Through consulting at Elkhart Group Limited and former work at the UCLA Statistical Consulting Group, he has supported a wide array of clients ranging from graduate students, to experienced researchers, and biotechnology companies. He also develops or co-develops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.Matt Wiley is a tenured, associate professor of mathematics with awards in both mathematics education and honour student engagement. He earned degrees in pure mathematics, computer science, and business administration through the University of California and Texas A&M systems. He serves as director for Victoria College´s quality enhancement plan and managing partner at Elkhart Group Limited, a statistical consultancy. With programming experience in R, C++, Ruby, Fortran, and JavaScript, he has always found ways to meld his passion for writing with his joy of logical problem solving and data science. From the boardroom to the classroom, Matt enjoys finding dynamic ways to partner with interdisciplinary and diverse teams to make complex ideas and projects understandable and solvable.iv