Neuerscheinungen 2017Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Annalisa Appice, Marzena Kryszkiewicz, Zbigniew W. Ras, Henryk Rybinski, Andrzej Skowron, Dominik Slezak
(Beteiligte)
Foundations of Intelligent Systems
23rd International Symposium, ISMIS 2017, Warsaw, Poland, June 26-29, 2017, Proceedings
Herausgegeben von Kryszkiewicz, Marzena; Appice, Annalisa; Slezak, Dominik; Rybinski, Henryk; Skowron, Andrzej; Ras, Zbigniew W.
1st ed. 2017. 2017. xxix, 747 S. 182 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2017
ISBN: 3-319-60437-6 (3319604376)
Neue ISBN: 978-3-319-60437-4 (9783319604374)
Preis und Lieferzeit: Bitte klicken
This book constitutes the proceedings of the 23 rd International Symposium on Foundations of Intelligent Systems, ISMIS 2017, held in Warsaw, Poland, in June 2017. The 56 regular and 15 short papers presented in this volume were carefully reviewed and selected from 118 submissions. The papers include both theoretical and practical aspects of machine learning, data mining methods, deep learning, bioinformatics and health informatics, intelligent information systems, knowledge-based systems, mining temporal, spatial and spatio-temporal data, text and Web mining. In addition, four special sessions were organized; namely, Special Session on Big Data Analytics and Stream Data Mining, Special Session on Granular and Soft Clustering for Data Science, Special Session on Knowledge Discovery with Formal Concept Analysis and Related Formalisms, and Special Session devoted to ISMIS 2017 Data Mining Competition on Trading Based on Recommendations, which was launched as a part of the conference.
Machine learning.- data mining methods.- deep learning, bioinformatics and health informatics.- intelligent information systems.- knowledge-based system.- mining temporal, spatial and spatio-temporal data.- text and Web mining.- big data analytics and stream data mining.- granular and soft clustering for data science.- knowledge discovery with formal concept analysis and related formalisms.- data mining competition on trading based on recommendations.