Neuerscheinungen 2017Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
James E. Gentle
Matrix Algebra
Theory, Computations and Applications in Statistics
2. Aufl. 2017. xxix, 648 S. 40 SW-Abb. 254 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER INTERNATIONAL PUBLISHING 2017
ISBN: 3-319-64866-7 (3319648667)
Neue ISBN: 978-3-319-64866-8 (9783319648668)
Preis und Lieferzeit: Bitte klicken
This much-needed work presents, among other things, the relevant aspects of the theory of matrix algebra for applications in statistics. Written in an informal style, it addresses computational issues and places more emphasis on applications than existing texts.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
"Gentle has put in a lot of time and effort to writing this book with careful attention to details. ... it is all needed to make sure the student has a firm and solid understanding of matrix algebra on the graduate level. I would recommend this book for all those who teach graduate level matrix algebra or ... to those undergraduate students who wish to have an independent study." (Peter Olszewski, MAA Reviews, January, 2018)
"Beautifully written, easy to read, with a well subindexed index of 16 pages and a bibliography of 13 that includes most modern and relevant textbooks and articles in the area of matrix theory and computations, as well as for statistics and big data computations." (Frank Uhlig, zbMATH 1386.15002, 2018)
"This very reader-friendly written volume presents an opportunity to graduate students and researchers to enjoy reading on the classical matrix analysis in its modern applications to statistics and to implement these methods in practical problem solving." (Stan Lipovetsky, Technometrics, Vol. 60 (2), 2018)
James E. Gentle, PhD, is University Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. Professor Gentle has held several national offices in the ASA and has served as editor and associate editor of journals of the ASA as well as for other journals in statistics and computing. He is author of Random Number Generation and Monte Carlo Methods (Springer, 2003) and Computational Statistics (Springer, 2009).