Neuerscheinungen 2017Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Oliver Stein
Grundzüge der Nichtlinearen Optimierung
1. Aufl. 2017. XII, 220 S. 41 SW-Abb. 240 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER SPEKTRUM 2017
ISBN: 3-662-55592-1 (3662555921)
Neue ISBN: 978-3-662-55592-7 (9783662555927)
Preis und Lieferzeit: Bitte klicken
Das vorliegende Lehrbuch ist eine Einführung in die nichtlineare Optimierung, die mathematische Sachverhalte einerseits stringent behandelt, sie aber andererseits auch sehr ausführlich motiviert und mit 39 Abbildungen illustriert. Das Buch richtet sich daher nicht nur an Mathematiker, sondern auch an Natur-, Ingenieur- und Wirtschaftswissenschaftler, die mathematisch fundierte Verfahren in ihrem Gebiet verstehen und anwenden möchten.
Mit fast zweihundert Seiten stellt das Buch genügend Auswahlmöglichkeiten zur Verfügung, um es als Grundlage für unterschiedlich angelegte Vorlesungen zur nichtlinearen Optimierung zu verwenden. Viele geometrische Ansätze für das Verständnis sowohl von Optimalitätsbedingungen als auch von numerischen Verfahren setzen dabei einen neuen Akzent, der den Bestand der bisherigen Lehrbücher zur Optimierung bereichert. Dies betrifft insbesondere die ausführliche Behandlung der Probleme, die durch verschiedene funktionale Beschreibungen derselben Geometrie der Menge zulässiger Punkte entstehen können, und die dadurch motivierte Einführung von Constraint Qualifications für die Herleitung ableitungsbasierter Optimalitätsbedingungen.
Einführung.- Unrestringierte Optimierung.- Restringierte Optimierung.
Prof. Dr. Oliver Stein ist Universitätsprofessor am Karlsruher Institut für Technologie und leitet dort den Bereich für Kontinuierliche Optimierung am Institut für Operations Research. In der Forschung konzentriert er sich auf Entwurf und Implementierung von Optimierungsverfahren sowie deren theoretische Grundlagen. Seine Lehrschwerpunkte sind globale Optimierung, nichtlineare Optimierung, gemischt-ganzzahlige Optimierung, konvexe Analysis und parametrische Optimierung.