Neuerscheinungen 2017Stand: 2020-02-01 |
Schnellsuche
ISBN/Stichwort/Autor
|
Herderstraße 10 10625 Berlin Tel.: 030 315 714 16 Fax 030 315 714 14 info@buchspektrum.de |
Ton J. Cleophas, Aeilko H. Zwinderman
(Beteiligte)
Machine Learning in Medicine
Part Three
Softcover reprint of the original 1st ed. 2013. 2017. xix, 224 S. 41 SW-Abb., 78 Tabellen. 235 mm
Verlag/Jahr: SPRINGER NETHERLANDS; SPRINGER 2017
ISBN: 9402402608 (9402402608)
Neue ISBN: 978-9402402605 (9789402402605)
Preis und Lieferzeit: Bitte klicken
Offering sequenced guidance for non-specialists on how to reap the benefits of machine learning in medicine and healthcare, this text harnesses the power of cutting-edge computing to maximize the accessibility and analytic value of stored data and records.
Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton´s methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Preface
1 Introduction to Machine Learning Part Three
2 Evolutionary Operations
3 Multiple Treatments
4 Multiple Endpoints
5 Optimal Binning
6 Exact P-Values
7 Probit Regression
8 Over-dispersion
9 Random Effects
10 Weighted Least Squares
11 Multiple Response Sets
12 Complex Samples
13 Runs Tests
14 Decision Trees
15 Spectral Plots
16 Newton´s Methods
17 Stochastic Processes, Stationary Markov Chains
18 Stochastic Processes, Absorbing Markov Chains
19 Conjoint Models
20 Machine Learning and Unsolved Questions
Index
From the reviews:
"This book is excellent. It is valuable source of a basic understanding of novel machine learning methods of clinical data analysis and can be used as a reference by students and teachers of epidemiology, statistics and biostatistics, computer and social scientists, and clinical investigators." (Vedang J. Bhavsar, Doody´s Book Reviews, March, 2014)