buchspektrum Internet-Buchhandlung

Neuerscheinungen 2018

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Nicolas Privault

Understanding Markov Chains


Examples and Applications
2. Aufl. 2018. xvii, 372 S. 44 SW-Abb. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; SPRINGER SINGAPORE; SPRINGER 2018
ISBN: 9811306583 (9811306583)
Neue ISBN: 978-9811306587 (9789811306587)

Preis und Lieferzeit: Bitte klicken


This book provides an undergraduate introduction to discrete and continuous-time Markov chains and their applications. It includes more than 70 exercises, along with complete solutions, that help illustrate and present all concepts.
This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.
Probability Background.- Gambling Problems.- Random Walks.- Discrete-Time Markov Chains.- First Step Analysis.- Classification of States.- Long-Run Behavior of Markov Chains.- Branching Processes.- Continuous-Time Markov Chains.- Discrete-Time Martingales.- Spatial Poisson Processes.- Reliability Theory.
The author is an associate professor from the Nanyang Technological University (NTU) and is well-established in the field of stochastic processes and a highly respected probabilist. He has authored the book, Stochastic Analysis in Discrete and Continuous Settings: With Normal Martingales, Lecture Notes in Mathematics, Springer, 2009 and was a co-editor for the book, Stochastic Analysis with Financial Applications, Progress in Probability, Vol. 65, Springer Basel, 2011. Aside from these two Springer titles, he has authored several others. He is currently teaching the course M27004-Probability Theory and Stochastic Processes at NTU. The manuscript has been developed over the years from his courses on Stochastic Processes.