buchspektrum Internet-Buchhandlung

Neuerscheinungen 2020

Stand: 2020-02-01
Schnellsuche
ISBN/Stichwort/Autor
Herderstraße 10
10625 Berlin
Tel.: 030 315 714 16
Fax 030 315 714 14
info@buchspektrum.de

Harvinder Atwal

Practical DataOps


Delivering Agile Data Science at Scale
1st ed. 2020. x, 240 S. 235 mm
Verlag/Jahr: SPRINGER, BERLIN; APRESS 2020
ISBN: 1-484-25103-2 (1484251032)
Neue ISBN: 978-1-484-25103-4 (9781484251034)

Preis und Lieferzeit: Bitte klicken


Beginning-Intermediate user level
Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making.
Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles.
This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output.

What You Will Learn

Develop a data strategy for your organization to help it reach its long-term goals

Recognize and eliminate barriers to delivering data to users at scale

Work on the right things for the right stakeholders through agile collaboration

Create trust in data via rigorous testing and effective data management

Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes

Create cross-functional self-organizing teams focused on goals not reporting lines

Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products

Who This Book Is For
Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.
Part I. Getting Started 1. The Problem with Data Science 2. Data Strategy
Part II. Toward DataOps 3. Lean Thinking 4. Agile Collaboration 5. Building Feedback and Measurement
Part III. Further Steps 6. Building Trust 7. Reproducibility 8. DevOps for Data
Part IV. The Self-Service Organization 9. Tools and Platforms 10. Organizing for DataOps 11. The Data Science Factory

Part V. Appendixes A. Evaluating Tools and Vendors B. The DataOps Manifesto